compiled.py 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296
  1. from modelverse_kernel.primitives import PrimitiveFinished
  2. def reverseKeyLookup(a, b, **remainder):
  3. edges = yield [("RO", [a])]
  4. expanded_edges = yield [("RE", [i]) for i in edges]
  5. for i, edge in enumerate(expanded_edges):
  6. if b == edge[1]:
  7. # Found our edge: edges[i]
  8. outgoing = yield [("RO", [edges[i]])]
  9. result = yield [("RE", [outgoing[0]])]
  10. raise PrimitiveFinished(result[1])
  11. result = yield [("CNV", ["(unknown: %s)" % b])]
  12. raise PrimitiveFinished(result)
  13. def read_attribute(a, b, c, **remainder):
  14. def make_list(v, l):
  15. return [v] if l else v
  16. #TODO this can be optimized even further...
  17. model_dict, b_val, c_val, type_mapping = \
  18. yield [("RD", [a, "model"]),
  19. ("RV", [b]),
  20. ("RV", [c]),
  21. ("RD", [a, "type_mapping"]),
  22. ]
  23. model_instance = \
  24. yield [("RD", [model_dict, b_val])]
  25. edges = yield [("RO", [model_instance])]
  26. edge_types = yield [("RDN", [type_mapping, i]) for i in edges]
  27. edge_types = make_list(edge_types, len(edges) == 1)
  28. type_edge_val = yield [("RE", [i]) for i in edge_types]
  29. type_edge_val = make_list(type_edge_val, len(edges) == 1)
  30. src_nodes = set([i[0] for i in type_edge_val])
  31. found_edges = yield [("RDE", [i, c_val]) for i in src_nodes]
  32. found_edges = make_list(found_edges, len(src_nodes) == 1)
  33. for e1 in found_edges:
  34. if e1 is not None:
  35. # Found an edge!
  36. for i, e2 in enumerate(edge_types):
  37. if e1 == e2:
  38. # The instance of this edge is the one we want!
  39. edge = edges[i]
  40. edge_val = yield [("RE", [edge])]
  41. result = edge_val[1]
  42. raise PrimitiveFinished(result)
  43. else:
  44. result = yield [("RR", [])]
  45. raise PrimitiveFinished(result)
  46. raise Exception("Error in reading edge!")
  47. def precompute_cardinalities(a, **remainder):
  48. result = yield [("CN", [])]
  49. # Read out all edges from the metamodel
  50. a = yield [("RD", [a, "metamodel"])]
  51. model_dict = yield [("RD", [a, "model"])]
  52. model_keys = yield [("RDK", [model_dict])]
  53. type_mapping = yield [("RD", [a, "type_mapping"])]
  54. elems = yield [("RDN", [model_dict, k]) for k in model_keys]
  55. model_keys_str= yield [("RV", [i]) for i in model_keys]
  56. elem_to_name = dict(zip(elems, model_keys_str))
  57. edges = yield [("RE", [i]) for i in elems]
  58. elems = [elems[i] for i, edge_val in enumerate(edges) if edge_val is not None]
  59. # Now we have all edges in the metamodel
  60. # Read out the type of the Association defining all cardinalities
  61. metamodel = yield [("RD", [a, "metamodel"])]
  62. metametamodel = yield [("RD", [metamodel, "metamodel"])]
  63. metametamodel_dict = \
  64. yield [("RD", [metametamodel, "model"])]
  65. assoc = yield [("RD", [metametamodel_dict, "Association"])]
  66. slc, suc, tlc, tuc = \
  67. yield [("RDE", [assoc, "source_lower_cardinality"]),
  68. ("RDE", [assoc, "source_upper_cardinality"]),
  69. ("RDE", [assoc, "target_lower_cardinality"]),
  70. ("RDE", [assoc, "target_upper_cardinality"]),
  71. ]
  72. # All that we now have to do is find, for each edge, whether or not it has an edge typed by any of these links!
  73. # Just find all links typed by these links!
  74. types = yield [("RDN", [type_mapping, i]) for i in elems]
  75. cardinalities = {}
  76. for i, edge_type in enumerate(types):
  77. if edge_type == slc:
  78. t = "slc"
  79. elif edge_type == suc:
  80. t = "suc"
  81. elif edge_type == tlc:
  82. t = "tlc"
  83. elif edge_type == tuc:
  84. t = "tuc"
  85. else:
  86. continue
  87. # Found a link, so add it
  88. source, destination = yield [("RE", [elems[i]])]
  89. # The edge gives the "source" the cardinality found in "destination"
  90. cardinalities.setdefault(elem_to_name[source], {})[t] = destination
  91. # Now we have to translate the "cardinalities" Python dictionary to a Modelverse dictionary
  92. nodes = yield [("CN", []) for i in cardinalities]
  93. yield [("CD", [result, i, node]) for i, node in zip(cardinalities.keys(), nodes)]
  94. l = cardinalities.keys()
  95. values = yield [("RD", [result, i]) for i in l]
  96. for i, value in enumerate(values):
  97. cards = cardinalities[l[i]]
  98. yield [("CD", [value, card_type, cards[card_type]]) for card_type in cards]
  99. raise PrimitiveFinished(result)
  100. def set_copy(a, **remainder):
  101. b = yield [("CN", [])]
  102. links = yield [("RO", [a])]
  103. exp_links = yield [("RE", [i]) for i in links]
  104. if len(links) == 1:
  105. exp_links = [exp_links]
  106. _ = yield [("CE", [b, i[1]]) for i in exp_links]
  107. raise PrimitiveFinished(b)
  108. def allInstances(a, b, **remainder):
  109. b_val = yield [("RV", [b])]
  110. model_dict= yield [("RD", [a, "model"])]
  111. metamodel = yield [("RD", [a, "metamodel"])]
  112. mm_dict = yield [("RD", [metamodel, "model"])]
  113. typing = yield [("RD", [a, "type_mapping"])]
  114. elem_keys = yield [("RDK", [model_dict])]
  115. elems = yield [("RDN", [model_dict, i]) for i in elem_keys]
  116. mms = yield [("RDN", [typing, i]) for i in elems]
  117. # Have the type for each name
  118. types_to_name_nodes = {}
  119. for key, mm in zip(elem_keys, mms):
  120. types_to_name_nodes.setdefault(mm, set()).add(key)
  121. # And now we have the inverse mapping: for each type, we have the node containing the name
  122. # Get the inheritance link type
  123. inheritance_type = yield [("RD", [metamodel, "inheritance"])]
  124. # Now we figure out which types are valid for the specified model
  125. desired_types = set()
  126. mm_element = yield [("RD", [mm_dict, b_val])]
  127. work_list = []
  128. work_list.append(mm_element)
  129. mm_typing = yield [("RD", [metamodel, "type_mapping"])]
  130. while work_list:
  131. mm_element = work_list.pop()
  132. if mm_element in desired_types:
  133. # Already been here, so stop
  134. continue
  135. # New element, so continue
  136. desired_types.add(mm_element)
  137. # Follow all inheritance links that COME IN this node, as all these are subtypes and should also match
  138. incoming = yield [("RI", [mm_element])]
  139. for i in incoming:
  140. t = yield [("RDN", [mm_typing, i])]
  141. if t == inheritance_type:
  142. e = yield [("RE", [i])]
  143. # Add the source of the inheritance link to the work list
  144. work_list.append(e[0])
  145. # Now desired_types holds all the direct types that we are interested in!
  146. # Construct the result out of all models that are direct instances of our specified type
  147. final = set()
  148. for t in desired_types:
  149. final |= types_to_name_nodes.get(t, set())
  150. # Result is a Python set with nodes, so just make this a Mv set
  151. result = yield [("CN", [])]
  152. v = yield [("RV", [i]) for i in final]
  153. _ = yield [("CE", [result, i]) for i in final]
  154. raise PrimitiveFinished(result)
  155. def add_AL(a, b, **remainder):
  156. worklist = [(b, "funcdef")]
  157. added = set()
  158. type_cache = {}
  159. model_dict = yield [("RD", [a, "model"])]
  160. metamodel = yield [("RD", [a, "metamodel"])]
  161. metamodel_dict = yield [("RD", [metamodel, "model"])]
  162. type_map = yield [("RD", [a, "type_mapping"])]
  163. outgoing = yield [("RO", [model_dict])]
  164. edges = yield [("RE", [i]) for i in outgoing]
  165. added |= set([i[1] for i in edges])
  166. result = yield [("CNV", ["__%s" % b])]
  167. # All the action language elements and their expected output links
  168. type_links = {
  169. "if": [("cond", ""), ("then", ""), ("else", ""), ("next", "")],
  170. "while": [("cond", ""), ("body", ""), ("next", "")],
  171. "assign": [("var", ""), ("value", ""), ("next", "")],
  172. "break": [("while", "while")],
  173. "continue": [("while", "while")],
  174. "return": [("value", "")],
  175. "resolve": [("var", "")],
  176. "access": [("var", "")],
  177. "constant": [("node", "")],
  178. "output": [("node", ""), ("next", "")],
  179. "global": [("var", "String"), ("next", "")],
  180. "param": [("name", "String"), ("value", ""), ("next_param", "param")],
  181. "funcdef": [("body", ""), ("next", "")],
  182. "call": [("func", ""), ("params", "param"), ("last_param", "param"), ("next", "")],
  183. }
  184. # Already add some often used types to the type cache, so we don't have to check for their presence
  185. to_str, string = yield [("RD", [metamodel_dict, "to_str"]),
  186. ("RD", [metamodel_dict, "String"])]
  187. type_cache = {"to_str": to_str,
  188. "String": string}
  189. while worklist:
  190. # Fetch the element and see if we need to add it
  191. worknode, expected_type = worklist.pop(0)
  192. if worknode in added:
  193. continue
  194. # Determine type of element
  195. if expected_type == "":
  196. value = yield [("RV", [worknode])]
  197. if (isinstance(value, dict)) and ("value" in value):
  198. v = value["value"]
  199. if v in ["if", "while", "assign", "call", "break", "continue", "return", "resolve", "access", "constant", "global", "declare"]:
  200. expected_type = v
  201. else:
  202. expected_type = "Any"
  203. else:
  204. expected_type = "Any"
  205. # Fill the cache
  206. if expected_type not in type_cache:
  207. type_cache[expected_type] = yield [("RD", [metamodel_dict, expected_type])]
  208. # Need to add it now
  209. yield [("CD", [model_dict, "__%s" % worknode, worknode])]
  210. added.add(worknode)
  211. # NOTE can't just use CD here, as the key is a node and not a value
  212. t1 = yield [("CE", [type_map, type_cache[expected_type]])]
  213. t2 = yield [("CE", [t1, worknode])]
  214. if t1 is None or t2 is None:
  215. raise Exception("ERROR")
  216. # Now add all its outgoing links, depending on the type we actually saw
  217. links = type_links.get(expected_type, [])
  218. for link in links:
  219. link_name, destination_type = link
  220. # Check if the link actually exists
  221. destination = yield [("RD", [worknode, link_name])]
  222. if destination is not None:
  223. # If so, we add it and continue
  224. edge = yield [("RDE", [worknode, link_name])]
  225. edge_outlinks = yield [("RO", [edge])]
  226. edge_outlink = edge_outlinks[0]
  227. edge_name = yield [("RE", [edge_outlink])]
  228. edge_name = edge_name[1]
  229. # Now add: edge, edge_outlink, edge_name
  230. # Add 'edge'
  231. yield [("CD", [model_dict, "__%s" % edge, edge])]
  232. added.add(edge)
  233. link_type = "%s_%s" % (expected_type, link_name)
  234. if link_type not in type_cache:
  235. type_cache[link_type] = yield [("RD", [metamodel_dict, link_type])]
  236. t = yield [("CE", [type_map, type_cache[link_type]])]
  237. yield [("CE", [t, edge])]
  238. # Add 'edge_outlink'
  239. yield [("CD", [model_dict, "__%s" % edge_outlink, edge_outlink])]
  240. added.add(edge_outlink)
  241. t = yield [("CE", [type_map, type_cache["to_str"]])]
  242. yield [("CE", [t, edge_outlink])]
  243. # Add 'edge_name' (if not present)
  244. if edge_name not in added:
  245. yield [("CD", [model_dict, "__%s" % edge_name, edge_name])]
  246. t = yield [("CE", [type_map, type_cache["String"]])]
  247. yield [("CE", [t, edge_name])]
  248. added.add(edge_name)
  249. # Add the destination to the worklist
  250. worklist.append((destination, destination_type))
  251. raise PrimitiveFinished(result)