main.py 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405
  1. from modelverse_state import status
  2. import sys
  3. from collections import defaultdict
  4. import os
  5. import cPickle as pickle
  6. # Work around Python 2 where a 'big integer' automatically becomes a long
  7. if sys.version > '3': # pragma: no cover
  8. integer_types = (int,)
  9. primitive_types = (int, float, str, bool)
  10. else: # pragma: no cover
  11. integer_types = (int, long)
  12. primitive_types = (int, long, float, str, bool, unicode)
  13. complex_primitives = frozenset(["if", "while", "assign", "call", "break", "continue", "return","resolve","access", "constant", "input", "output", "declare", "global"])
  14. def instance_to_string(value):
  15. return value["value"]
  16. def string_to_instance(value):
  17. return {'value': value}
  18. class ModelverseState(object):
  19. def __init__(self, bootfile = None):
  20. self.free_id = 0
  21. self.edges = {}
  22. self.outgoing = defaultdict(set)
  23. self.incoming = defaultdict(set)
  24. self.values = {}
  25. self.nodes = set()
  26. self.GC = True
  27. self.to_delete = set()
  28. self.cache = {}
  29. if bootfile is not None:
  30. self.root = self.parse(bootfile)
  31. else:
  32. self.root, _ = self.create_node()
  33. def dump_modelverse(self):
  34. with open("/tmp/modelverse.out", "w") as f:
  35. f.write("digraph main {\n")
  36. for n in self.nodes:
  37. if n in self.values:
  38. f.write("a_%s [label=\"a_%s (%s)\"];\n" % (n, n, self.values[n]))
  39. else:
  40. f.write("a_%s [label=\"a_%s\"];\n" % (n, n))
  41. for i, e in self.edges.iteritems():
  42. f.write("%s -> %s [label=\"%s\"];\n" % (e[0], e[1], i))
  43. f.write("}")
  44. return (self.root, status.SUCCESS)
  45. def parse(self, filename):
  46. picklefile = filename + ".pickle"
  47. try:
  48. if os.path.getmtime(picklefile) > os.path.getmtime(filename):
  49. # Pickle is more recent than grammarfile, so we can use it
  50. self.root, self.free_id, self.nodes, self.edges, self.values = pickle.load(open(picklefile, 'rb'))
  51. for name in self.edges:
  52. source, destination = self.edges[name]
  53. self.outgoing[source].add(name)
  54. self.incoming[destination].add(name)
  55. return self.root
  56. else:
  57. raise Exception("Invalid pickle")
  58. except Exception as e:
  59. # We have to parse the file and create the pickle
  60. symbols = {}
  61. def resolve(symb):
  62. try:
  63. return int(symb)
  64. except:
  65. if symb[0] == "?":
  66. derefs = symb[1:].split("/")
  67. v, _ = self.read_dict(symbols["root"], "__hierarchy")
  68. for deref in derefs:
  69. v, _ = self.read_dict(v, deref)
  70. return v
  71. else:
  72. return symbols[symb]
  73. with open(filename, 'r') as f:
  74. for line in f:
  75. element_type, constructor = line.split(None, 1)
  76. name, values = constructor.split("(", 1)
  77. name = name.split()[0]
  78. values, _ = values.rsplit(")", 1)
  79. if element_type == "Node":
  80. if values == "":
  81. symbols[name], status = self.create_node()
  82. else:
  83. value = values
  84. if value in complex_primitives:
  85. value = string_to_instance(value)
  86. else:
  87. value = eval(value)
  88. symbols[name], status = self.create_nodevalue(value)
  89. elif element_type == "Edge":
  90. values = [v.split()[0] for v in values.split(",")]
  91. symbols[name], status = self.create_edge(resolve(values[0]), resolve(values[1]))
  92. else:
  93. raise Exception("Unknown element type: %s" % element_type)
  94. if status != 100:
  95. raise Exception("Failed to process line for reason %s: %s" % (status, line))
  96. # Creation successful, now also create a pickle
  97. with open(picklefile, 'wb') as f:
  98. pickle.dump((symbols["root"], self.free_id, self.nodes, self.edges, self.values), f, pickle.HIGHEST_PROTOCOL)
  99. return symbols["root"]
  100. def read_root(self):
  101. return (self.root, status.SUCCESS)
  102. def create_node(self):
  103. self.nodes.add(self.free_id)
  104. self.free_id += 1
  105. return (self.free_id - 1, status.SUCCESS)
  106. def create_edge(self, source, target):
  107. if source not in self.edges and source not in self.nodes:
  108. return (None, status.FAIL_CE_SOURCE)
  109. elif target not in self.edges and target not in self.nodes:
  110. return (None, status.FAIL_CE_TARGET)
  111. else:
  112. self.outgoing[source].add(self.free_id)
  113. self.incoming[target].add(self.free_id)
  114. self.edges[self.free_id] = (source, target)
  115. self.free_id += 1
  116. return (self.free_id - 1, status.SUCCESS)
  117. def is_valid_datavalue(self, value):
  118. if isinstance(value, dict):
  119. if "value" in value and value["value"] in complex_primitives:
  120. return True
  121. else:
  122. return False
  123. elif not isinstance(value, primitive_types):
  124. return False
  125. elif isinstance(value, integer_types) and not (-2**63 <= value <= 2**64 - 1):
  126. return False
  127. return True
  128. def create_nodevalue(self, value):
  129. if not self.is_valid_datavalue(value):
  130. print("Not correct: " + str(value))
  131. return (None, status.FAIL_CNV_OOB)
  132. self.values[self.free_id] = value
  133. self.nodes.add(self.free_id)
  134. self.free_id += 1
  135. return (self.free_id - 1, status.SUCCESS)
  136. def create_dict(self, source, data, destination):
  137. if source not in self.nodes and source not in self.edges:
  138. return (None, status.FAIL_CDICT_SOURCE)
  139. if destination not in self.nodes and destination not in self.edges:
  140. return (None, status.FAIL_CDICT_TARGET)
  141. if not self.is_valid_datavalue(data):
  142. return (None, status.FAIL_CDICT_OOB)
  143. n = self.create_nodevalue(data)[0]
  144. e = self.create_edge(source, destination)[0]
  145. self.create_edge(e, n)
  146. self.cache.setdefault(source, {})[data] = e
  147. return (None, status.SUCCESS)
  148. def read_value(self, node):
  149. if node not in self.nodes:
  150. return (None, status.FAIL_RV_UNKNOWN)
  151. v = self.values.get(node, None)
  152. if v is None:
  153. return (None, status.FAIL_RV_NO_VALUE)
  154. else:
  155. return (v, status.SUCCESS)
  156. def read_outgoing(self, elem):
  157. if elem in self.edges or elem in self.nodes:
  158. return (list(self.outgoing[elem]), status.SUCCESS)
  159. else:
  160. return (None, status.FAIL_RO_UNKNOWN)
  161. def read_incoming(self, elem):
  162. if elem in self.edges or elem in self.nodes:
  163. return (list(self.incoming[elem]), status.SUCCESS)
  164. else:
  165. return (None, status.FAIL_RI_UNKNOWN)
  166. def read_edge(self, edge):
  167. v = self.edges.get(edge, None)
  168. if v is None:
  169. return ([None, None], status.FAIL_RE_UNKNOWN)
  170. else:
  171. s, t = v
  172. return ([s, t], status.SUCCESS)
  173. def read_dict(self, node, value):
  174. e, s = self.read_dict_edge(node, value)
  175. if s != status.SUCCESS:
  176. return (None, {status.FAIL_RDICTE_UNKNOWN: status.FAIL_RDICT_UNKNOWN,
  177. status.FAIL_RDICTE_UNCERTAIN: status.FAIL_RDICT_UNCERTAIN,
  178. status.FAIL_RDICTE_OOB: status.FAIL_RDICT_OOB,
  179. status.FAIL_RDICTE_NOT_FOUND: status.FAIL_RDICT_NOT_FOUND,
  180. status.FAIL_RDICTE_AMBIGUOUS: status.FAIL_RDICT_AMBIGUOUS}[s])
  181. return (self.edges[e][1], status.SUCCESS)
  182. def read_dict_keys(self, node):
  183. if node not in self.nodes and node not in self.edges:
  184. return (None, status.FAIL_RDICTKEYS_UNKNOWN)
  185. result = []
  186. for e1 in self.outgoing.get(node, set()):
  187. data_links = self.outgoing.get(e1, set())
  188. for e2 in data_links:
  189. result.append(self.edges[e2][1])
  190. return (result, status.SUCCESS)
  191. def read_dict_edge(self, node, value):
  192. try:
  193. first = self.cache[node][str(value)]
  194. # Got hit, so validate
  195. if (self.edges[first][0] == node) and \
  196. (len(self.outgoing[first]) == 1) and \
  197. (self.values[self.edges[list(self.outgoing[first])[0]][1]] == value):
  198. return (first, status.SUCCESS)
  199. del self.cache[node][value]
  200. except KeyError:
  201. # Didn't exist
  202. pass
  203. if node not in self.nodes and node not in self.edges:
  204. return (None, status.FAIL_RDICTE_UNKNOWN)
  205. if not self.is_valid_datavalue(value):
  206. return (None, status.FAIL_RDICTE_OOB)
  207. # Get all outgoing links
  208. found = None
  209. for e1 in self.outgoing.get(node, set()):
  210. data_links = self.outgoing.get(e1, set())
  211. # For each link, we read the links that might link to a data value
  212. for e2 in data_links:
  213. # Now read out the target of the link
  214. target = self.edges[e2][1]
  215. # And access its value
  216. v = self.values.get(target, None)
  217. if v == value:
  218. # Found a match
  219. # Now get the target of the original link
  220. if found is not None:
  221. print("Duplicate key on value: %s (%s <-> %s)!" % (v, found, e1))
  222. return (None, status.FAIL_RDICTE_AMBIGUOUS)
  223. found = e1
  224. self.cache.setdefault(node, {})[value] = e1
  225. if found is not None:
  226. return (found, status.SUCCESS)
  227. else:
  228. return (None, status.FAIL_RDICTE_NOT_FOUND)
  229. def read_dict_node(self, node, value_node):
  230. e, s = self.read_dict_node_edge(node, value_node)
  231. if s != status.SUCCESS:
  232. return (None, {status.FAIL_RDICTNE_UNKNOWN: status.FAIL_RDICTN_UNKNOWN,
  233. status.FAIL_RDICTNE_UNCERTAIN: status.FAIL_RDICTN_UNCERTAIN,
  234. status.FAIL_RDICTNE_AMBIGUOUS: status.FAIL_RDICTN_AMBIGUOUS,
  235. status.FAIL_RDICTNE_OOB: status.FAIL_RDICTN_OOB,
  236. status.FAIL_RDICTNE_NOT_FOUND: status.FAIL_RDICTN_NOT_FOUND}[s])
  237. return (self.edges[e][1], status.SUCCESS)
  238. def read_dict_node_edge(self, node, value_node):
  239. if node not in self.nodes and node not in self.edges:
  240. return (None, status.FAIL_RDICTNE_UNKNOWN)
  241. # Get all outgoing links
  242. found = None
  243. for e1 in self.outgoing.get(node, set()):
  244. data_links = self.outgoing.get(e1, set())
  245. # For each link, we read the links that might link to a data value
  246. for e2 in data_links:
  247. # Now read out the target of the link
  248. target = self.edges[e2][1]
  249. # And access its value
  250. if target == value_node:
  251. # Found a match
  252. # Now get the target of the original link
  253. if found is not None:
  254. print("Duplicate key on node: %s (%s <-> %s)!" % (value_node, found, e1))
  255. return (None, status.FAIL_RDICTNE_AMBIGUOUS)
  256. found = e1
  257. if found is not None:
  258. return (found, status.SUCCESS)
  259. else:
  260. return (None, status.FAIL_RDICTNE_NOT_FOUND)
  261. def read_reverse_dict(self, node, value):
  262. if node not in self.nodes and node not in self.edges:
  263. return (None, status.FAIL_RRDICT_UNKNOWN)
  264. elif not self.is_valid_datavalue(value):
  265. return (None, status.FAIL_RRDICT_OOB)
  266. # Get all outgoing links
  267. matches = []
  268. for e1 in self.incoming.get(node, set()):
  269. data_links = self.outgoing.get(e1, set())
  270. # For each link, we read the links that might link to a data value
  271. for e2 in data_links:
  272. # Now read out the target of the link
  273. target = self.edges[e2][1]
  274. # And access its value
  275. v = self.values.get(target, None)
  276. if v == value:
  277. # Found a match
  278. if len(data_links) > 1:
  279. return (None, status.FAIL_RRDICT_UNCERTAIN)
  280. else:
  281. matches.append(e1)
  282. if len(matches) == 0:
  283. return (None, status.FAIL_RRDICT_NOT_FOUND)
  284. else:
  285. return ([self.edges[e][0] for e in matches], status.SUCCESS)
  286. def delete_node(self, node):
  287. if node == self.root:
  288. return (None, status.FAIL_DN_UNKNOWN)
  289. if node not in self.nodes:
  290. return (None, status.FAIL_DN_UNKNOWN)
  291. self.nodes.remove(node)
  292. if node in self.cache:
  293. del self.cache[node]
  294. if node in self.values:
  295. del self.values[node]
  296. s = set()
  297. for e in self.outgoing[node]:
  298. s.add(e)
  299. for e in self.incoming[node]:
  300. s.add(e)
  301. for e in s:
  302. self.delete_edge(e)
  303. del self.outgoing[node]
  304. del self.incoming[node]
  305. return (None, status.SUCCESS)
  306. def delete_edge(self, edge):
  307. if edge not in self.edges:
  308. return (None, status.FAIL_DE_UNKNOWN)
  309. s, t = self.edges[edge]
  310. self.incoming[t].remove(edge)
  311. self.outgoing[s].remove(edge)
  312. del self.edges[edge]
  313. s = set()
  314. for e in self.outgoing[edge]:
  315. s.add(e)
  316. for e in self.incoming[edge]:
  317. s.add(e)
  318. for e in s:
  319. self.delete_edge(e)
  320. del self.outgoing[edge]
  321. del self.incoming[edge]
  322. if (self.GC) and (not self.incoming[t]) and (t not in self.edges):
  323. # Remove this node as well
  324. # Edges aren't deleted like this, as they might have a reachable target and source!
  325. # If they haven't, they will be removed because the source was removed.
  326. self.to_delete.add(t)
  327. return (None, status.SUCCESS)
  328. def garbage_collect(self):
  329. while self.to_delete:
  330. t = self.to_delete.pop()
  331. if not self.incoming[t]:
  332. self.delete_node(t)
  333. def purge(self):
  334. self.garbage_collect()
  335. values = set(self.nodes) | set(self.edges)
  336. visit_list = [self.root]
  337. while visit_list:
  338. elem = visit_list.pop()
  339. if elem in values:
  340. # Remove it from the leftover values
  341. values.remove(elem)
  342. if elem in self.edges:
  343. visit_list.extend(self.edges[elem])
  344. visit_list.extend(self.outgoing[elem])
  345. visit_list.extend(self.incoming[elem])
  346. # All remaining elements are to be purged
  347. if len(values) > 0:
  348. while values:
  349. v = values.pop()
  350. if v in self.nodes:
  351. self.delete_node(v)
  352. print("Remaining nodes: " + str(len(self.nodes)))