compiled.py 7.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182
  1. from modelverse_kernel.primitives import PrimitiveFinished
  2. def reverseKeyLookup(a, b, **remainder):
  3. edges = yield [("RO", [a])]
  4. expanded_edges = yield [("RE", [i]) for i in edges]
  5. for i, edge in enumerate(expanded_edges):
  6. if b == edge[1]:
  7. # Found our edge: edges[i]
  8. outgoing = yield [("RO", [edges[i]])]
  9. result = yield [("RE", [outgoing[0]])]
  10. raise PrimitiveFinished(result[1])
  11. result = yield [("CNV", ["(unknown: %s)" % b])]
  12. raise PrimitiveFinished(result)
  13. def read_attribute(a, b, c, **remainder):
  14. def make_list(v, l):
  15. return [v] if l else v
  16. #TODO this can be optimized even further...
  17. model_dict, b_val, c_val, type_mapping = \
  18. yield [("RD", [a, "model"]),
  19. ("RV", [b]),
  20. ("RV", [c]),
  21. ("RD", [a, "type_mapping"]),
  22. ]
  23. model_instance = \
  24. yield [("RD", [model_dict, b_val])]
  25. edges = yield [("RO", [model_instance])]
  26. edge_types = yield [("RDN", [type_mapping, i]) for i in edges]
  27. edge_types = make_list(edge_types, len(edges) == 1)
  28. type_edge_val = yield [("RE", [i]) for i in edge_types]
  29. type_edge_val = make_list(type_edge_val, len(edges) == 1)
  30. src_nodes = set([i[0] for i in type_edge_val])
  31. found_edges = yield [("RDE", [i, c_val]) for i in src_nodes]
  32. found_edges = make_list(found_edges, len(src_nodes) == 1)
  33. for e1 in found_edges:
  34. if e1 is not None:
  35. # Found an edge!
  36. for i, e2 in enumerate(edge_types):
  37. if e1 == e2:
  38. # The instance of this edge is the one we want!
  39. edge = edges[i]
  40. edge_val = yield [("RE", [edge])]
  41. result = edge_val[1]
  42. raise PrimitiveFinished(result)
  43. else:
  44. result = yield [("RR", [])]
  45. raise PrimitiveFinished(result)
  46. raise Exception("Error in reading edge!")
  47. def precompute_cardinalities(a, **remainder):
  48. result = yield [("CN", [])]
  49. # Read out all edges from the metamodel
  50. a = yield [("RD", [a, "metamodel"])]
  51. model_dict = yield [("RD", [a, "model"])]
  52. model_keys = yield [("RDK", [model_dict])]
  53. type_mapping = yield [("RD", [a, "type_mapping"])]
  54. elems = yield [("RDN", [model_dict, k]) for k in model_keys]
  55. model_keys_str= yield [("RV", [i]) for i in model_keys]
  56. elem_to_name = dict(zip(elems, model_keys_str))
  57. edges = yield [("RE", [i]) for i in elems]
  58. elems = [elems[i] for i, edge_val in enumerate(edges) if edge_val is not None]
  59. # Now we have all edges in the metamodel
  60. # Read out the type of the Association defining all cardinalities
  61. metamodel = yield [("RD", [a, "metamodel"])]
  62. metametamodel = yield [("RD", [metamodel, "metamodel"])]
  63. metametamodel_dict = \
  64. yield [("RD", [metametamodel, "model"])]
  65. assoc = yield [("RD", [metametamodel_dict, "Association"])]
  66. slc, suc, tlc, tuc = \
  67. yield [("RDE", [assoc, "source_lower_cardinality"]),
  68. ("RDE", [assoc, "source_upper_cardinality"]),
  69. ("RDE", [assoc, "target_lower_cardinality"]),
  70. ("RDE", [assoc, "target_upper_cardinality"]),
  71. ]
  72. # All that we now have to do is find, for each edge, whether or not it has an edge typed by any of these links!
  73. # Just find all links typed by these links!
  74. types = yield [("RDN", [type_mapping, i]) for i in elems]
  75. cardinalities = {}
  76. for i, edge_type in enumerate(types):
  77. if edge_type == slc:
  78. t = "slc"
  79. elif edge_type == suc:
  80. t = "suc"
  81. elif edge_type == tlc:
  82. t = "tlc"
  83. elif edge_type == tuc:
  84. t = "tuc"
  85. else:
  86. continue
  87. # Found a link, so add it
  88. source, destination = yield [("RE", [elems[i]])]
  89. # The edge gives the "source" the cardinality found in "destination"
  90. cardinalities.setdefault(elem_to_name[source], {})[t] = destination
  91. # Now we have to translate the "cardinalities" Python dictionary to a Modelverse dictionary
  92. nodes = yield [("CN", []) for i in cardinalities]
  93. yield [("CD", [result, i, node]) for i, node in zip(cardinalities.keys(), nodes)]
  94. l = cardinalities.keys()
  95. values = yield [("RD", [result, i]) for i in l]
  96. for i, value in enumerate(values):
  97. cards = cardinalities[l[i]]
  98. yield [("CD", [value, card_type, cards[card_type]]) for card_type in cards]
  99. raise PrimitiveFinished(result)
  100. def set_copy(a, **remainder):
  101. b = yield [("CN", [])]
  102. links = yield [("RO", [a])]
  103. exp_links = yield [("RE", [i]) for i in links]
  104. if len(links) == 1:
  105. exp_links = [exp_links]
  106. _ = yield [("CE", [b, i[1]]) for i in exp_links]
  107. raise PrimitiveFinished(b)
  108. def allInstances(a, b, **remainder):
  109. b_val = yield [("RV", [b])]
  110. model_dict= yield [("RD", [a, "model"])]
  111. metamodel = yield [("RD", [a, "metamodel"])]
  112. mm_dict = yield [("RD", [metamodel, "model"])]
  113. typing = yield [("RD", [a, "type_mapping"])]
  114. elem_keys = yield [("RDK", [model_dict])]
  115. elems = yield [("RDN", [model_dict, i]) for i in elem_keys]
  116. mms = yield [("RDN", [typing, i]) for i in elems]
  117. # Have the type for each name
  118. types_to_name_nodes = {}
  119. for key, mm in zip(elem_keys, mms):
  120. types_to_name_nodes.setdefault(mm, set()).add(key)
  121. # And now we have the inverse mapping: for each type, we have the node containing the name
  122. # Get the inheritance link type
  123. inheritance_type = yield [("RD", [metamodel, "inheritance"])]
  124. # Now we figure out which types are valid for the specified model
  125. desired_types = set()
  126. mm_element = yield [("RD", [mm_dict, b_val])]
  127. work_list = []
  128. work_list.append(mm_element)
  129. mm_typing = yield [("RD", [metamodel, "type_mapping"])]
  130. while work_list:
  131. mm_element = work_list.pop()
  132. if mm_element in desired_types:
  133. # Already been here, so stop
  134. continue
  135. # New element, so continue
  136. desired_types.add(mm_element)
  137. # Follow all inheritance links that COME IN this node, as all these are subtypes and should also match
  138. incoming = yield [("RI", [mm_element])]
  139. for i in incoming:
  140. t = yield [("RDN", [mm_typing, i])]
  141. if t == inheritance_type:
  142. e = yield [("RE", [i])]
  143. # Add the source of the inheritance link to the work list
  144. work_list.append(e[0])
  145. # Now desired_types holds all the direct types that we are interested in!
  146. # Construct the result out of all models that are direct instances of our specified type
  147. final = set()
  148. for t in desired_types:
  149. final |= types_to_name_nodes.get(t, set())
  150. # Result is a Python set with nodes, so just make this a Mv set
  151. result = yield [("CN", [])]
  152. v = yield [("RV", [i]) for i in final]
  153. _ = yield [("CE", [result, i]) for i in final]
  154. raise PrimitiveFinished(result)