compiled.py 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453
  1. from modelverse_kernel.primitives import PrimitiveFinished
  2. import modelverse_jit.runtime as jit_runtime
  3. def reverseKeyLookup(a, b, **remainder):
  4. edges, = yield [("RO", [a])]
  5. expanded_edges = yield [("RE", [i]) for i in edges]
  6. for i, edge in enumerate(expanded_edges):
  7. if b == edge[1]:
  8. # Found our edge: edges[i]
  9. outgoing, = yield [("RO", [edges[i]])]
  10. result, = yield [("RE", [outgoing[0]])]
  11. raise PrimitiveFinished(result[1])
  12. result, = yield [("CNV", ["(unknown: %s)" % b])]
  13. raise PrimitiveFinished(result)
  14. def read_attribute(a, b, c, **remainder):
  15. model_dict, b_val, c_val, type_mapping = \
  16. yield [("RD", [a, "model"]),
  17. ("RV", [b]),
  18. ("RV", [c]),
  19. ("RD", [a, "type_mapping"]),
  20. ]
  21. model_instance, = \
  22. yield [("RD", [model_dict, b_val])]
  23. edges, = yield [("RO", [model_instance])]
  24. edge_types = yield [("RDN", [type_mapping, i]) for i in edges]
  25. type_edge_val = yield [("RE", [i]) for i in edge_types]
  26. src_nodes = set([i[0] for i in type_edge_val])
  27. found_edges = yield [("RDE", [i, c_val]) for i in src_nodes]
  28. for e1 in found_edges:
  29. if e1 is not None:
  30. # Found an edge!
  31. for i, e2 in enumerate(edge_types):
  32. if e1 == e2:
  33. # The instance of this edge is the one we want!
  34. edge = edges[i]
  35. edge_val, = yield [("RE", [edge])]
  36. result = edge_val[1]
  37. raise PrimitiveFinished(result)
  38. else:
  39. result, = yield [("RR", [])]
  40. raise PrimitiveFinished(result)
  41. raise Exception("Error in reading edge!")
  42. def precompute_cardinalities(a, **remainder):
  43. result, = yield [("CN", [])]
  44. # Read out all edges from the metamodel
  45. a, = yield [("RD", [a, "metamodel"])]
  46. model_dict, = yield [("RD", [a, "model"])]
  47. model_keys, = yield [("RDK", [model_dict])]
  48. type_mapping, = yield [("RD", [a, "type_mapping"])]
  49. elems = yield [("RDN", [model_dict, k]) for k in model_keys]
  50. model_keys_str = yield [("RV", [i]) for i in model_keys]
  51. elem_to_name = dict(zip(elems, model_keys_str))
  52. edges = yield [("RE", [i]) for i in elems]
  53. elems = [elems[i] for i, edge_val in enumerate(edges) if edge_val is not None]
  54. # Now we have all edges in the metamodel
  55. # Read out the type of the Association defining all cardinalities
  56. metamodel, = yield [("RD", [a, "metamodel"])]
  57. metametamodel, = yield [("RD", [metamodel, "metamodel"])]
  58. metametamodel_dict, = \
  59. yield [("RD", [metametamodel, "model"])]
  60. assoc, = yield [("RD", [metametamodel_dict, "Association"])]
  61. slc, suc, tlc, tuc = \
  62. yield [("RDE", [assoc, "source_lower_cardinality"]),
  63. ("RDE", [assoc, "source_upper_cardinality"]),
  64. ("RDE", [assoc, "target_lower_cardinality"]),
  65. ("RDE", [assoc, "target_upper_cardinality"]),
  66. ]
  67. # All that we now have to do is find, for each edge, whether or not it has an edge typed by any of these links!
  68. # Just find all links typed by these links!
  69. types = yield [("RDN", [type_mapping, i]) for i in elems]
  70. cardinalities = {}
  71. for i, edge_type in enumerate(types):
  72. if edge_type == slc:
  73. t = "slc"
  74. elif edge_type == suc:
  75. t = "suc"
  76. elif edge_type == tlc:
  77. t = "tlc"
  78. elif edge_type == tuc:
  79. t = "tuc"
  80. else:
  81. continue
  82. # Found a link, so add it
  83. srcdst, = yield [("RE", [elems[i]])]
  84. source, destination = srcdst
  85. # The edge gives the "source" the cardinality found in "destination"
  86. cardinalities.setdefault(elem_to_name[source], {})[t] = destination
  87. # Now we have to translate the "cardinalities" Python dictionary to a Modelverse dictionary
  88. nodes = yield [("CN", []) for i in cardinalities]
  89. yield [("CD", [result, i, node]) for i, node in zip(cardinalities.keys(), nodes)]
  90. l = cardinalities.keys()
  91. values = yield [("RD", [result, i]) for i in l]
  92. for i, value in enumerate(values):
  93. cards = cardinalities[l[i]]
  94. yield [("CD", [value, card_type, cards[card_type]]) for card_type in cards]
  95. raise PrimitiveFinished(result)
  96. def set_copy(a, **remainder):
  97. b, = yield [("CN", [])]
  98. links, = yield [("RO", [a])]
  99. exp_links = yield [("RE", [i]) for i in links]
  100. _ = yield [("CE", [b, i[1]]) for i in exp_links]
  101. raise PrimitiveFinished(b)
  102. def allInstances(a, b, **remainder):
  103. b_val, = yield [("RV", [b])]
  104. model_dict,= yield [("RD", [a, "model"])]
  105. metamodel, = yield [("RD", [a, "metamodel"])]
  106. m3, = yield [("RD", [metamodel, "metamodel"])]
  107. m3_model, = yield [("RD", [m3, "model"])]
  108. mm_dict, = yield [("RD", [metamodel, "model"])]
  109. typing, = yield [("RD", [a, "type_mapping"])]
  110. elem_keys, = yield [("RDK", [model_dict])]
  111. elems = yield [("RDN", [model_dict, i]) for i in elem_keys]
  112. mms = yield [("RDN", [typing, i]) for i in elems]
  113. # Have the type for each name
  114. types_to_name_nodes = {}
  115. for key, mm in zip(elem_keys, mms):
  116. types_to_name_nodes.setdefault(mm, set()).add(key)
  117. # And now we have the inverse mapping: for each type, we have the node containing the name
  118. # Get the inheritance link type
  119. inheritance_type, = yield [("RD", [m3_model, "Inheritance"])]
  120. # Now we figure out which types are valid for the specified model
  121. desired_types = set()
  122. mm_element, = yield [("RD", [mm_dict, b_val])]
  123. work_list = []
  124. work_list.append(mm_element)
  125. mm_typing, = yield [("RD", [metamodel, "type_mapping"])]
  126. while work_list:
  127. mm_element = work_list.pop()
  128. if mm_element in desired_types:
  129. # Already been here, so stop
  130. continue
  131. # New element, so continue
  132. desired_types.add(mm_element)
  133. # Follow all inheritance links that COME IN this node, as all these are subtypes and should also match
  134. incoming, = yield [("RI", [mm_element])]
  135. for i in incoming:
  136. t, = yield [("RDN", [mm_typing, i])]
  137. if t == inheritance_type:
  138. e, = yield [("RE", [i])]
  139. # Add the source of the inheritance link to the work list
  140. work_list.append(e[0])
  141. # Now desired_types holds all the direct types that we are interested in!
  142. # Construct the result out of all models that are direct instances of our specified type
  143. final = set()
  144. for t in desired_types:
  145. final |= types_to_name_nodes.get(t, set())
  146. # Result is a Python set with nodes, so just make this a Mv set
  147. result, = yield [("CN", [])]
  148. v = yield [("RV", [i]) for i in final]
  149. _ = yield [("CE", [result, i]) for i in final]
  150. raise PrimitiveFinished(result)
  151. def add_AL(a, b, **remainder):
  152. worklist = [(b, "funcdef")]
  153. added = set()
  154. type_cache = {}
  155. model_dict, = yield [("RD", [a, "model"])]
  156. metamodel, = yield [("RD", [a, "metamodel"])]
  157. metamodel_dict, = yield [("RD", [metamodel, "model"])]
  158. type_map, = yield [("RD", [a, "type_mapping"])]
  159. outgoing, = yield [("RO", [model_dict])]
  160. edges = yield [("RE", [i]) for i in outgoing]
  161. added |= set([i[1] for i in edges])
  162. result, = yield [("CNV", ["__%s" % b])]
  163. # All the action language elements and their expected output links
  164. type_links = {
  165. "if": [("cond", ""), ("then", ""), ("else", ""), ("next", "")],
  166. "while": [("cond", ""), ("body", ""), ("next", "")],
  167. "assign": [("var", ""), ("value", ""), ("next", "")],
  168. "break": [("while", "while")],
  169. "continue": [("while", "while")],
  170. "return": [("value", "")],
  171. "resolve": [("var", "")],
  172. "access": [("var", "")],
  173. "constant": [("node", "")],
  174. "output": [("node", ""), ("next", "")],
  175. "global": [("var", "String"), ("next", "")],
  176. "param": [("name", "String"), ("value", ""), ("next_param", "param")],
  177. "funcdef": [("body", ""), ("next", "")],
  178. "call": [("func", ""), ("params", "param"), ("last_param", "param"), ("next", "")],
  179. }
  180. # Already add some often used types to the type cache, so we don't have to check for their presence
  181. to_str, string = yield [("RD", [metamodel_dict, "to_str"]),
  182. ("RD", [metamodel_dict, "String"])]
  183. type_cache = {"to_str": to_str,
  184. "String": string}
  185. while worklist:
  186. # Fetch the element and see if we need to add it
  187. worknode, expected_type = worklist.pop(0)
  188. if worknode in added:
  189. continue
  190. # Determine type of element
  191. if expected_type == "":
  192. value, = yield [("RV", [worknode])]
  193. if (isinstance(value, dict)) and ("value" in value):
  194. v = value["value"]
  195. if v in ["if", "while", "assign", "call", "break", "continue", "return", "resolve", "access", "constant", "global", "declare"]:
  196. expected_type = v
  197. else:
  198. expected_type = "Any"
  199. else:
  200. expected_type = "Any"
  201. # Fill the cache
  202. if expected_type not in type_cache:
  203. type_cache[expected_type], = yield [("RD", [metamodel_dict, expected_type])]
  204. # Need to add it now
  205. yield [("CD", [model_dict, "__%s" % worknode, worknode])]
  206. added.add(worknode)
  207. # NOTE can't just use CD here, as the key is a node and not a value
  208. t1, = yield [("CE", [type_map, type_cache[expected_type]])]
  209. t2, = yield [("CE", [t1, worknode])]
  210. if t1 is None or t2 is None:
  211. raise Exception("ERROR")
  212. # Now add all its outgoing links, depending on the type we actually saw
  213. links = type_links.get(expected_type, [])
  214. for link in links:
  215. link_name, destination_type = link
  216. # Check if the link actually exists
  217. destination, = yield [("RD", [worknode, link_name])]
  218. if destination is not None:
  219. # If so, we add it and continue
  220. edge, = yield [("RDE", [worknode, link_name])]
  221. edge_outlinks, = yield [("RO", [edge])]
  222. edge_outlink = edge_outlinks[0]
  223. edge_name, = yield [("RE", [edge_outlink])]
  224. edge_name = edge_name[1]
  225. # Now add: edge, edge_outlink, edge_name
  226. # Add 'edge'
  227. yield [("CD", [model_dict, "__%s" % edge, edge])]
  228. added.add(edge)
  229. link_type = "%s_%s" % (expected_type, link_name)
  230. if link_type not in type_cache:
  231. type_cache[link_type], = yield [("RD", [metamodel_dict, link_type])]
  232. t, = yield [("CE", [type_map, type_cache[link_type]])]
  233. yield [("CE", [t, edge])]
  234. # Add 'edge_outlink'
  235. yield [("CD", [model_dict, "__%s" % edge_outlink, edge_outlink])]
  236. added.add(edge_outlink)
  237. t, = yield [("CE", [type_map, type_cache["to_str"]])]
  238. yield [("CE", [t, edge_outlink])]
  239. # Add 'edge_name' (if not present)
  240. if edge_name not in added:
  241. yield [("CD", [model_dict, "__%s" % edge_name, edge_name])]
  242. t, = yield [("CE", [type_map, type_cache["String"]])]
  243. yield [("CE", [t, edge_name])]
  244. added.add(edge_name)
  245. # Add the destination to the worklist
  246. worklist.append((destination, destination_type))
  247. raise PrimitiveFinished(result)
  248. def get_superclasses(a, b, **remainder):
  249. mm, = yield [("RD", [a, "metamodel"])]
  250. mm, = yield [("RD", [mm, "metamodel"])]
  251. m, = yield [("RD", [mm, "model"])]
  252. inheritance, = yield [("RD", [m, "Inheritance"])]
  253. model_dict, = yield [("RD", [a, "model"])]
  254. b_v, = yield [("RV", [b])]
  255. subclass, = yield [("RD", [model_dict, b_v])]
  256. type_mapping, = yield [("RD", [a, "type_mapping"])]
  257. names, = yield [("RDK", [model_dict])]
  258. elems = yield [("RDN", [model_dict, i]) for i in names]
  259. elem_to_name = dict(zip(elems, names))
  260. result, = yield [("CN", [])]
  261. worklist = [subclass]
  262. touched = set()
  263. while worklist:
  264. subclass = worklist.pop()
  265. res = elem_to_name[subclass]
  266. if subclass not in touched:
  267. touched.add(subclass)
  268. yield [("CE", [result, res])]
  269. outgoing, = yield [("RO", [subclass])]
  270. types = yield [("RDN", [type_mapping, i]) for i in outgoing]
  271. for i, t in enumerate(types):
  272. if t == inheritance:
  273. # Found an inheritance link!
  274. elem = outgoing[i]
  275. srcdst, = yield [("RE", [elem])]
  276. src, dst = srcdst
  277. # Find elem in elems
  278. worklist.append(dst)
  279. raise PrimitiveFinished(result)
  280. def selectPossibleIncoming(a, b, c, **remainder):
  281. model_dict, = yield [("RD", [a, "model"])]
  282. limit_set_links, = \
  283. yield [("RO", [c])]
  284. limit_set = yield [("RE", [i]) for i in limit_set_links]
  285. limit_set_names = [i[1] for i in limit_set]
  286. name_values = yield [("RV", [i]) for i in limit_set_names]
  287. limit_set = yield [("RD", [model_dict, i]) for i in name_values]
  288. superclasses, = yield [("CALL_ARGS", [get_superclasses, (a, b)])]
  289. vals, = yield [("RO", [superclasses])]
  290. superclasses = yield [("RE", [i]) for i in vals]
  291. superclasses = [i[1] for i in superclasses]
  292. superclass_names = yield [("RV", [i]) for i in superclasses]
  293. elems = yield [("RD", [model_dict, i]) for i in superclass_names]
  294. result, = yield [("CN", [])]
  295. for i, edge in enumerate(limit_set):
  296. srcdst, = yield [("RE", [edge])]
  297. src, dst = srcdst
  298. if dst in elems:
  299. yield [("CE", [result, limit_set_names[i]])]
  300. raise PrimitiveFinished(result)
  301. def selectPossibleOutgoing(a, b, c, **remainder):
  302. model_dict, = yield [("RD", [a, "model"])]
  303. limit_set_links, = \
  304. yield [("RO", [c])]
  305. limit_set = yield [("RE", [i]) for i in limit_set_links]
  306. limit_set_names = \
  307. [i[1] for i in limit_set]
  308. name_values = yield [("RV", [i]) for i in limit_set_names]
  309. limit_set = yield [("RD", [model_dict, i]) for i in name_values]
  310. superclasses, = yield [("CALL_ARGS", [get_superclasses, (a, b)])]
  311. vals, = yield [("RO", [superclasses])]
  312. superclasses = yield [("RE", [i]) for i in vals]
  313. superclasses = [i[1] for i in superclasses]
  314. superclass_names = yield [("RV", [i]) for i in superclasses]
  315. elems = yield [("RD", [model_dict, i]) for i in superclass_names]
  316. result, = yield [("CN", [])]
  317. for i, edge in enumerate(limit_set):
  318. srcdst, = yield [("RE", [edge])]
  319. src, dst = srcdst
  320. if src in elems:
  321. yield [("CE", [result, limit_set_names[i]])]
  322. raise PrimitiveFinished(result)
  323. def check_symbols(a, b, c, **remainder):
  324. symbols = {}
  325. function_name, = yield [("RV", [b])]
  326. symbols[function_name] = False
  327. object_links, = yield [("RO", [c])]
  328. set_elements = yield [("RE", [i]) for i in object_links]
  329. set_elements = [i[1] for i in set_elements]
  330. set_values = yield [("RV", [i]) for i in set_elements]
  331. set_elements = yield [("RD", [a, i]) for i in set_values]
  332. symbols_set = yield [("RD", [i, "symbols"]) for i in set_elements]
  333. all_keys = yield [("RDK", [i]) for i in symbols_set]
  334. for i, s in zip(all_keys, symbols_set):
  335. # For each object we have found
  336. keys = yield [("RV", [j]) for j in i]
  337. values = yield [("RD", [s, j]) for j in keys]
  338. values = yield [("RV", [j]) for j in values]
  339. for key, value in zip(keys, values):
  340. k = key
  341. v = value
  342. if v and symbols.get(k, False):
  343. result = yield [("CNV", ["ERROR: multiple definition of symbol " + str(key)])]
  344. raise PrimitiveFinished(result)
  345. elif v and not symbols.get(k, False):
  346. symbols[k] = True
  347. elif not v and k not in symbols:
  348. symbols[k] = False
  349. for i, j in symbols.items():
  350. if i == "input" or i == "output":
  351. continue
  352. if not j:
  353. result, = yield [("CNV", ["ERROR: undefined symbol " + str(i)])]
  354. raise PrimitiveFinished(result)
  355. result, = yield [("CNV", ["OK"])]
  356. raise PrimitiveFinished(result)
  357. def construct_const(**remainder):
  358. v, = yield [("CNV", [{"value": "constant"}])]
  359. # Get input: keep trying until we get something
  360. inp, = yield [("CALL_KWARGS", [jit_runtime.get_input, remainder])]
  361. yield [("CD", [v, "node", inp])]
  362. raise PrimitiveFinished(v)
  363. def instantiated_name(a, b, **remainder):
  364. name_value, = yield [("RV", [b])]
  365. if name_value == "":
  366. b, = yield [("CNV", ["__" + str(a)])]
  367. raise PrimitiveFinished(b)
  368. def retype(a, b, c, **remainder):
  369. tm, = yield [("RD", [a, "type_mapping"])]
  370. m, = yield [("RD", [a, "model"])]
  371. mm, = yield [("RD", [a, "metamodel"])]
  372. mm_dict, = yield [("RD", [mm, "model"])]
  373. c_val, = yield [("RV", [c])]
  374. mm_ref, = yield [("RD", [mm_dict, c_val])]
  375. b_val, = yield [("RV", [b])]
  376. m_ref, = yield [("RD", [m, b_val])]
  377. prev_edge, = yield [("RDNE", [tm, m_ref])]
  378. if prev_edge is not None:
  379. yield [("DE", [prev_edge])]
  380. t, = yield [("CE", [tm, mm_ref])]
  381. yield [("CE", [t, m_ref])]
  382. raise PrimitiveFinished(None)