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1 About LoLA

1.1 Introduction

1.1.1 Objective

With LoLA, you can investigate properties of discrete systems that enjoy a high degree of
concurrency, i.e. systems that have many causally unrelated events. Typical application domains
include business process models, asynchronous circuits, biochemical reaction chains, protocols
but exclude sequential software, real-time systems, and synchronous circuits.

1.1.2 Input

LoLA expects its input to be given as a Petri net, one of the most suitable formalisms for
concurrent systems. LoLA uses the class of place/transition nets that has a very simple and
clear semantics. A Petri net can be passed to LoLA in a clearly arranged ASCII based language.
LoL A does not provide any graphical user interface for painting a Petri net. However, several
graphical Petri net modeling tools are able to export files that can be read by LoLA or translated
into the LoLA format (see Chapter 3 [File formats|, page 9).

1.1.3 Property

Properties analyzed by LoLA include typical properties of concurrent systems such as deadlock
freedom and properties specified in a temporal logic. A property can be passed as command line
parameter or as file. Given a Petri net and a property, LoLA explores the state space (reacha-
bility graph) of the Petri net to evaluate the property. As soon as the value is determined, LoLA
quits state space exploration. LoLA is not a tool for randomly playing a manually controlled
token game nor for using the Petri net as a control engine for any kind of environment.

1.1.4 Exploration

The state space exploration methods implemented in LoL A belong to the class of explicit tech-
niques, as opposed to symbolic (e.g. BDD based or SAT based) exploration methods. That is,
states are explored one by one and state explosion is tackled by exploring only a part of the
state space. This part is by construction equivalent to the full state space with respect to the
investigated property. The collection of available state space reduction techniques is unique in
several regards:

e With the partial order reduction, the symmetry method, the sweep-line method, the cov-
erability graph construction, and other techniques, LoLA provides a larger collection of
explicit-state reduction techniques than any other explicit state exploration tool.

e In LoLA, many of these techniques can be applied jointly thus getting better state space
reduction.

e For the partial order reduction, LoLA uses unique methods that provide more reduction
power than the popularly used LTL preserving or CTL preserving methods

e The symmetry method used in LoLA is based on the graph automorphisms of the Petri net.
This method is able to deal with arbitrarily complex patterns of symmetry, as opposed to
the scalar set approach used in several other tools.

e LoLA can apply the sweep-line method without requiring the user to provide a progress
measure — it computes a suitable progress measure on its own.

e LoLA employs results from the unique Petri net structure theory for further state space
reduction or efficiency benefits.
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1.1.5 Memory

LoLA uses the main memory of your machine for handling the state space. It supports several
data structures for representing the states. Some of these structure are inherently subject to loss
of information, that is they do not guarantee exhaustive search. If LoLA is run on a multicore
machine, it can distribute some of its computations over a given number of cores.

1.1.6 User interaction

Once started, LoLLA does not require any user interaction. It is purely working in batch mode.
The only action that a user can take on a running LoLA is to abort it. There is no way to
interactively query a once computed state space. If you want to explore several properties,
you want to run LoLA multiple times. The reason for that design is that reduction techniques
depend on the given property, so there is hardly one state space that is able to answer more
than one question. Unlike some other verification tools, LoLA does not produce source code
that needs subsequent compilation.

1.1.7 Output

Output by LoLLA is organized such that it is easy to use LoL A as a backend engine in other tools,
or in scripts. If applicable, LoLA supports its results by witness states, or witness paths. LoLA
can also provide results gathered in preprocessing, it reports run time and size of the explored
part of the state space, and it emits progress messages. Most messages can be suppressed, be
deferred to files, or deferred to a remote machine.

1.1.8 More information

e Karsten Schmidt. LoLA: A Low Level Analyser. In Mogens Nielsen and Dan Simpson, ed-
itors, Application and Theory of Petri Nets 2000: 21st International Conference, ICATPN
2000, Aarhus, Denmark, June 2000. Proceedings, volume 1825 of Lecture Notes in Com-
puter Science, pages 465-474, June 2000. Springer-Verlag.

o Karsten Wolf. Generating Petri Net State Spaces. In Jetty Kleijn and Alex Yakovlev,
editors, 28th International Conference on Applications and Theory of Petri Nets and Other
Models of Concurrency, ICATPN 2007, Siedlce, Poland, June 25-29, 2007, Proceedings,
volume 4546 of Lecture Notes in Computer Science, pages 29-42, June 2007. Springer-
Verlag. Invited lecture

1.2 Success stories

1.2.1 Verification of a GALS wrapper

A GALS circuit is a complex integrated circuit where several components operate locally syn-
chronously but exchange information asynchronously. GALS technology promises lower energy
consumption and higher clock frequency.

In a joint project, researchers at Humboldt-Universitdt zu Berlin and the Semiconductor Re-
search Institute in Frankfurt (Oder) analyzed a GALS circuit that implements a device for
coding/decoding signals of wireless LAN connections according to the 802.11 protocol. They
were particularly concerned with parts of the circuit they called wrapper. A wrapper is at-
tached to each synchronous component of a GALS circuit. It is responsible for managing the
asynchronously incoming data, pausing the local clock in case of no pending data, and ship-
ping the outgoing signals to the respective next component. They modeled a wrapper as a
place-transition net and analyzed the occurrence of hazard situations. A hazard is a situation
where, according to two incoming signals within a very short time interval, output signals may
assume undefined values. In the model, a hazard situation corresponds to a particular reachable
state predicate. LoLA was used with stubborn sets and the sweep-line method as reduction
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techniques. Analysis revealed 8 hazard situations in the model. 6 of them were ruled out by
the engineers due to timing constraints which were not modeled. The remaining 2 hazards were
confirmed as real problems. The circuit was redesigned and another verification confirmed the
absence of hazard situations.

More information:

e Christian Stahl, Wolfgang Reisig, and Milos Krstic. Hazard Detection in a GALS Wrapper:
A Case Study. In Jorg Desel and Y. Watanabe, editors, Proceedings of the Fifth Interna-
tional Conference on Application of Concurrency to System Design (ACSD’05), St. Malo,
France, pages 234-243, June 2005. IEEE Computer Society.

1.2.2 Validation of a Petri net semantics for WS-BPEL

The language WS-BPEL has been proposed by an industrial consortium for the specification
of Web services. Researchers at Humboldt-Universitat zu Berlin proposed a formal semantics
for WS-BPEL on the basis of high-level Petri nets (with a straightforward place-transition net
abstraction that ignores data dependencies). Due to tricky concepts in the language, the trans-
lation of WS-BPEL to Petri nets required a validation. The validation was carried out through
an automated translation of WS-BPEL into Petri nets and a subsequent analysis of the resulting
Petri nets using LoLA. LoLA was used with stubborn sets and the sweep-line method as most
frequently used reduction techniques.

More information:

e Sebastian Hinz, Karsten Schmidt, and Christian Stahl. Transforming BPEL to Petri Nets.
In Wil M. P. van der Aalst, B. Benatallah, F. Casati, and F. Curbera, editors, Proceedings of
the Third International Conference on Business Process Management (BPM 2005), volume
3649 of Lecture Notes in Computer Science, Nancy, France, pages 220-235, September 2005.

1.2.3 Verification of WS-BPEL choreographies

The language WS-BPEL has been proposed by an industrial consortium for the specification of
Web services. Researchers at Humboldt-Universitat zu Berlin developed a tool for translating
WS-BPEL processes and choreographies into place-transition nets. LoLLA has been used for
checking several properties on the choreographies. They used stubborn sets and the symmetry
method. The latter method turned out to be useful in those cases where choreographies involved
a large number of instances of one and the same process. This way, choreographies with more
than 1,000 service instances could be verified.

More information:

e Niels Lohmann, Oliver Kopp, Frank Leymann, and Wolfgang Reisig.  Analyzing
BPEL4Chor: Verification and Participant Synthesis. In Marlon Dumas and Reiko Heckel,
editors, Web Services and Formal Methods, Forth International Workshop, WS-FM 2007,
Brisbane, Australia, September 28-29, 2007, Proceedings, volume 4937 of Lecture Notes in
Computer Science, pages 46-60, 2008. Springer-Verlag.

1.2.4 Garavel’s Challenge in the Petri Net mailing list

In 2003, H. Garavel posted a place/transition net to the Petri net mailing list. It consisted
of 485 places and 776 transitions. He was interested in quasi-liveness, i.e. the absence of any
transition that is dead in the initial marking. According to the posting, the example stems from
the translation of a LOTOS specification into Petri nets. There were four responses reporting
successful verification. One of them involved LoLA. With LoLLA, we checked each transition
separately for non-death. We succeeded for all but two transitions. For the remaining transitions,
goal-oriented execution confirmed non-death. According to the other responses which involved
either symbolic (BDD based) verification or the use of the covering step graph technique, the
full state space consisted of almost 1022 states.
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The Petri net is part of the LoLA distribution and can be found in the examples/vasy folder.
The example files are explained in Chapter 12 [Examples|, page 41.

More information:
e The original posting: http://www.informatik.uni-hamburg.de/cgi-bin/TGI/pnml/
getpost?id=2003/07/2709
e The summary of responses: http://www.informatik.uni-hamburg.de/cgi-bin/TGI/
pnml/getpost?id=2003/09/2736

1.2.5 Exploring biochemical networks

A biochemical network reflects substances and known reactions for their mutual transformation.
Researchers at SRI use LoLA in the exploration of Petri net models of such networks. They use
the capability of LoLA to produce witness paths which are interpreted as reaction sequences.

More information:

e Carolyn Talcott , David L. Dill. The pathway logic assistant. Third International Workshop
on Computational Methods in Systems Biology, 2005.

1.2.6 Soundness of business process models

Soundness is a fundamental correctness criterion in the area of business process models. There
exists several domain-specific approaches to verify soundness, for instance graph-theoretic ap-
proaches exploiting block structured models over algebraic techniques based on invariants. An
experiment conducted with industrial business process models from IBM customers showed that
LoLA could verify the models in a matter of milliseconds and hence offered the same performance
than domain-specific techniques.

More information:

e Dirk Fahland, Cédric Favre, Jana Koehler, Niels Lohmann, Hagen Volzer, and Karsten
Wolf. Analysis on Demand: Instantaneous Soundness Checking of Industrial Business
Process Models. Data Knowl. Eng., 70(5):448-466, 2011.

o The Petri net files are available for download at http://service-technology . org/
soundness

1.2.7 LoLA as a “sparring partner”
Some researchers have compared the performance of their domain-specific solution of selected
problems to the performance of LoLA on a Petri net translation of that problem:

e in the context of verifying parameterized Boolean programs

e in the context of task partitioning of multiprocessor embedded systems.
In all cases, experimental results suggest excellent performance of LoLA: not significantly worse
than the promoted domain-specific tool and better than other general purpose tools mentioned.
More information:

e A. Kaiser, D. Kroening, T. Wahl. Dynamic cutoff detection in parameterized concurrent
programs. CAV 2010.

e D. Das, P.P. Chakrabarti, R. Kumar. Functional verification of task partitioning for mul-
tiprocessor embedded systems. ACM Transactions on Design Automation of Electronic
Systems (TODAES) Volume 12 Issue 4, September 2007 Article No. 44

1.2.8 The Model Checking Contest at the PETRI NETS conferences

The contests have been established in 2011. In all issues since then, LoLA participated in the
REACHABILITY and DEADLOCK disciplines and proved competitiveness with other Petri
net verification tools.

More information:


http://www.informatik.uni-hamburg.de/cgi-bin/TGI/pnml/getpost?id=2003/07/2709
http://www.informatik.uni-hamburg.de/cgi-bin/TGI/pnml/getpost?id=2003/07/2709
http://www.informatik.uni-hamburg.de/cgi-bin/TGI/pnml/getpost?id=2003/09/2736
http://www.informatik.uni-hamburg.de/cgi-bin/TGI/pnml/getpost?id=2003/09/2736
http://service-technology.org/soundness
http://service-technology.org/soundness
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e Fabrice Kordon et al. Report on the Model Checking Contest at Petri Nets 2011. LNCS
ToPNoC, 7400(VI):169-196, August 2012.

e Fabrice Kordon et al. Raw Report on the Model Checking Contest at Petri Nets 2012.
Technical Report arXiv:1209.2382, arXiv.org, September 2012.

e Fabrice Kordon et al. Model Checking Contest at Petri Nets: Report on the 2013 edition.
Technical Report arXiv:1309.2485, arXiv.org, September 2013.

e http://mcc.lip6.fr
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2 Bootstrapping LoLA

2.1 Setting up LoLA

2.1.1 Download

The most recent version of LoLA can be downloaded at http://service-technology.org/
files/lola. As of April 2016, the most recent version is 2.0.

The use of LoLA is free under the GNU Affero General Public License (AGPL) which is part
of the distribution (see file COPYING). An online version is available at http://www.gnu.org/
licenses/agpl-3.0.html.

2.1.2 Setup and installation

To unpack the downloaded tarball 1ola-2.0.tar.gz, go to your download directory and execute

$ gunzip lola-2.0.tar.gz
$ tar xf lola-2.0.tar

This creates a directory lola-2.0 which contains the LoLA distribution. You then need to
configure LoLLA by executing

$ cd lola-2.0
$ ./configure

The configuration should finish with a message like

Successfully configured LoLA 2.0.
-> compile LoLA with ‘make’.

Then, execute

- |

to compile LoLA. You may ignore potential compiler warnings. If everything is OK, you should
see a message like

Successfully compiled LoLA 2.0.
-> check out LoLA’s help with ‘src/lola --help’
-> install LoLA to /usr/local/bin with ‘make install’

This indicates that the LoLA binary lola has been successfully built in the src directory.

To install LoLA, you may optionally execute

[% sudo make install j

to copy all required files to /usr/local/bin. An installed LoLA has the advantage that LoLA
can be called from anywhere and that you will not need the lola-2.0 directory any more. In
the following, we assume that LoL A has been installed and can be called by simply executing
‘lola’.

You can change the installation directory by calling ‘. /configure —-prefix=DIRECTORY’. Then,
the required files will be installed to DIRECTORY/bin.



http://service-technology.org/files/lola
http://service-technology.org/files/lola
http://www.gnu.org/licenses/agpl-3.0.html
http://www.gnu.org/licenses/agpl-3.0.html
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2.1.3 Using OS X

With Apple OS X, you can easily install LoLA using the Homebrew package manager (http://
brew.sh) which provides a ‘brew’ command. You can then install LoLA with

$ brew cask homebrew/science
$ brew install lola

You can also install the latest development version from LoLA’s source code repository by
executing

[% brew install lola --HEAD :

Any required tools are installed automatically.

2.2 Troubleshooting

The only prerequisite of LoLLA is a working C++ compiler such as GCC or Clang. Successful
compilations have been reported from machines running GNU/Linux, Apple OS X, and Microsoft
Windows (running cygwin). We are aware of problems on Solaris and FreeBSD machines, but
have too little input to fix these issues at the moment. Feedback would be greatly appreciated!

If an error occurs, you should see a warning like:

configure: error: C++ compiler cannot create executables
See ‘config.log’ for more details.

In that case, please review the file config.log. If you cannot resolve the problem, please send
the file to lola@service-technology.org.

If the compilation succeeds but you encounter any other problems, you can help us by executing

$ ./configure --enable-debug
$ make check

which runs a large test suite.! Please then explain your problem with LoLA in an email to
lola@service-technology.org and attach the file tests/testsuite.log.

2.3 First steps

As first step, you may want to get to know LoLA and execute

[$ lola --help j

to display information about the command line parameters of LoLA. This gives you a brief
overview of the most important parameters of LoLA. With

[ﬂ; lola --detailed-help }

a more detailed help is printed.

In most of the cases, LoLA requires at least one input file (usually a Petri net) and a parameter
which property to check. To an example, change to the ‘examples/mutex’ directory of the LoL A
distribution and execute

1 Note you need GNU Autoconf to generate the testsuite and GNU Bash to run it.


http://brew.sh
http://brew.sh
mailto:lola@service-technology.org
mailto:lola@service-technology.org

Chapter 2: Bootstrapping LoLL A 8

[% lola mutex.lola --formula="EF DEADLOCK"

J

This will make LoL A check for deadlocks (‘--formula="EF DEADLOCK"’) in the Petri net given
as file mutex.lola. Beside a lot of output, you shall observe the message

lola: result: no
lola: The net does not satisfy the given formula.

indicating that this net is deadlock free. In the remainder of this manual, all other parameters
are explained in detail.
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3 File formats

LoLA uses different proprietary file formats. Each file format aims at being both simple to write
or generate and easy to parse while trying to be as little verbose as possible. Consequently, we
decided against the standard PNML file format and other XML dialects which are sometimes
used to encode formulae.

In the following, we provide EBNF grammars for each file format. Thereby, we use the following
conventions:

e Terminal symbols such as keywords are given in quotes, e.g. ‘PLACE’. Thereby, ‘IDENTIFIER’

and ‘NUMBER’ denote a placeholder for identifiers and numerical constants, respectively, for
which we provide a regular expression in [Regular expressions for terminal symbols|, page 10.

?

Any non-capitalized word denotes a nonterminal symbol which is eventually defied using
3

Alternatives are separated with ‘|’. Symbols followed by ‘?” may be skipped. Symbols
followed by ‘+’ may be repeated an arbitrary number of times. Symbols followed ‘*’ may be
repeated an arbitrary number of times or skipped. Parentheses are used to group symbols
with respect to skipping and repetition.

3.1 Petri nets

3.1.1 Informal description

LoLA’s Petri net file formats contains of three parts:

1.

The places are defined as a comma-separated list of place names, beginning with keyword
‘PLACE’. For a (sub-)list of places, an optional token bound can be defined using keyword
‘SAFE’ followed by a number (1 if no number is provided). This bound is not enforced by
LoLA, but rather used to allow for bit-perfect data structures. If no bound is given, 232 — 1
is used as maximal bound. If a place is listed several times, the respective arc weights are
added.

An initial marking in the form of a comma-separated list an assignment of place names with
token numbers, beginning with keyword ‘MARKING’. If no number is provided (i.e., only a
place name is listed), an initial marking of one token is assumed.

a list of transitions, each beginning with keyword ‘TRANSITION’, followed by a name and
an optional fairness assumption (‘STRONG FAIR’ or ‘WEAK FAIR’). Then, the transition’s
preset (‘CONSUME’) and postset (‘PRODUCE’) is given is the same fashion of a marking in the
‘MARKING’ section (i.e., an arc weight of 1 is assumed if not given explicitly).

A lot of example files are provided in the examples folder of the LoLLA distribution.

3.1.2 EBNF grammar

net ::= ’PLACE’ place_lists ’MARKING’ marking_list? ’;’ transition+
place_lists ::= ( capacity? place_list ’;’ )+

capacity ::= ’SAFE’ ’NUMBER’? ’:’

place_list ::= nodeident ( ’,’ nodeident )*

nodeident ::= ’IDENTIFIER’ | ’NUMBER’

marking_list ::= marking ( ’,’ marking )*

marking ::= nodeident ( ’:’ ’NUMBER’ )7
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transition ::= ’TRANSITION’ nodeident fairness?
’CONSUME’ arc_list? ’;’ ’PRODUCE’ arc_list? ’;°’
fairness ::= ( ’STRONG’ | ’WEAK’ ) °FAIR’
arc_list ::= arc ( ’,’ arc )*
arc ::= nodeident ( ’:’ ’NUMBER’ )7

3.1.3 Regular expressions for terminal symbols

NUMBER
Any nonempty sequence of digits.
"-1?[0-9]+
IDENTIFIER
Any nonempty sequence of characters, excluding “,’, ;’, ‘:?, “C, 97, “{’, ‘}, or

whitespace (spaces, tabs, or newlines).

(7,5 : O\t \n\r\{\}]+
3.1.4 Compatibility

Low level Petri net files from earlier versions of LoLA (before version 2.0) can be read without
any adjustments. High level Petri net files need to be translated into a low-level version first.

3.2 CTL* formulae

3.2.1 Informal description

Syntactically, LoLA can read any CTL* formula. Internally, the given formula is then analyzed
and the respective algorithm (reachability, CTL, or LTL checking) is called.

A formula is built from the following elements:

e an atomic proposition consisting of an integer comparison (‘=’, ‘=", >’ >=" <’ <=") of
terms built over place names, integers, w markings (‘00’), and addition (‘+’) and subtraction
(‘=") thereof,

e the Boolean constants ‘TRUE’ and ‘FALSE’,

e the keyword ‘FIREABLE’ followed by a transition name which is internally unfolded to an
atomic proposition that is true iff the given transition is activated,

e the keyword ‘DEADLOCK’ for an atomic proposition that is true in a state that activates no
transition,

e the keyword ‘INITIAL’ which is internally unfolded to an atomic proposition that is true
only in the initial marking,

e the Boolean operators for negation (‘NOT’), conjunction (‘AND’), disjunction (‘OR’), exclusive
disjunction (‘XOR’), implication (‘->’), and equivalence (‘<->’),

e the temporal operators for eventual occurrence (‘EVENTUALLY’ or ‘F’), global occurrence
(‘GLOBALLY’ or ‘G’), next state (‘NEXTSTATE’ or ‘X’), until (‘UNTIL’ or ‘U’), and release
(‘RELEASE’ or ‘R’),

e the shortcuts for reachability (‘REACHABLE’ = ‘EF’), invariance (‘INVARIANT’ = ‘AG’), and
impossibility (‘IMPOSSIBLE’ = ‘AG NOT’),

e the universal (‘ALLPATH’ or ‘A’) and existential (‘EXPATH’ or ‘E’) path quantifiers,

e and parentheses to override associativities.

A lot of example files are provided in the examples folder of the LoLA distribution and through-
out this manual.
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3.2.2 EBNF grammar

formula ::= ’FORMULA’? statepredicate ’;’7

statepredicate ::= ’(’ statepredicate ’)’
atomic_proposition

’NOT’ statepredicate

path_quantifier statepredicate

unary_temporal_operator statepredicate
>(’ statepredicate binary_temporal_operator statepredicate ’)’

11

statepredicate boolean_operator statepredicate

boolean_operator ::= ’AND’ | °0R’ | ’XOR’ | ’->7 | ’<=>?
unary_temporal_operator ::= ’ALWAYS’ | ’EVENTUALLY’ ’NEXTSTATE’
| ’REACHABLE’ | ’INVARIANT’ | ’IMPOSSIBLE’
binary_temporal_operator ::= ’UNTIL’ | ’RELEASE’
path_quantifier ::= ’ALLPATH’ | ’EXPATH’
atomic_proposition ::= term term_comparison_operator term
| ’TRUE’
| ’FALSE’
| FIREABLE’ ’(° ’IDENTIFIER’ ’)°
| INITIAL’
| ’DEADLOCK’
term_comparison_operator ::= ’=’ =0 | 0> | >=0 | k=2
term ::= ’(’ term ’)’
| ’IDENTIFIER’
| ’NUMBER’
| term ’+’ term
| term ’-’ term
| °NUMBER’ ’*’ term
| ’00?

3.2.3 Regular expressions for terminal symbols

NUMBER
Any nonempty sequence of digits, optionally preceded by a minus sign.
"-n?[0-9]+

IDENTIFIER
Any nonempty sequence of characters, excluding *,”, ;7. :’, “C, 97, “{’, ‘}’, or

whitespace (spaces, tabs, or newlines).

(7,5 ONe \n\r\{\}]+
3.2.4 Compatibility

Formulae from earlier versions of LoLA (version 1.x) are in principle compatible to this grammar.
However, depending on the mode of LoLA 1.x, a temporal operator needs to be added:

mode in LoLA 1.x formula in LoLA 1.x
BOUNDEDGRAPH —

BOUNDEDNET —

BOUNDEDPLACE ANALYSE PLACE p

1 Not directly supported, see [boundedness|, page 16.
2 Together with option ‘--search=cover’.

formula in LoLA 2.0 notes
not supported

_ 1

AG p < 0o 2
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DEADLOCK
DEADTRANSITION
EVENTUALLYPROP
FATRPROP
FINDPATH

FULL

HOME

LIVEPROP
MODELCHECKING
NONE
REACHABILITY
REVERSIBILITY
STABLEPROP
STATEPREDICATE
STATESPACE

ANALYSE TRANSITION t
FORMULA phi
FORMULA phi
FORMULA phi

FORMULA phi
FORMULA phi

ANALYSE MARKING m

FORMULA phi
FORMULA phi

12

EF DEADLOCK

AG NOT FIREABLE(t)
F phi

GF phi

phi

not supported
AGEF phi
phi

EF phi 6
AGEF INITIAL

FG phi

EF phi

not supported

Together with option ‘--search=findpath’, see [Memoryless search|, page 19.

Together with option ‘--check=full’, see [Compute the state space], page 13.

Together with option ‘--check=none’, see [Check nothing], page 13.

The state predicate phi thereby needs to express marking m, e.g. ‘p1 = 1 AND p2 = 0’ for marking ‘p1:1, p2:0’.
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4 Supported Properties

Most properties supported by LoLA can be specified in temporal logic. LoLA supports specifica-
tions given in the branching time logic CTL as well as specifications in the linear time logic LTL.
Specifying a property in temporal logic does not necessarily mean that LoLA runs a general
LTL or CTL model checking algorithm. Instead, LoLA first checks whether the property can
be reduced to a search for deadlocks, a simple reachability query (in CTL: EF ¢), or a liveness
query (in CTL: AGEF ¢). If so, it runs state space exploration techniques that are optimized
to that particular property. In fact, the techniques for such simple properties are the particular
strength of LoLA. Here, it offers a number of unique approaches. For complex queries it basically
applies the same techniques as any other explicit-state model checker.

4.1 Explicitly supported properties

You select the kind of property to be verified using the ‘--check=PROPERTY’ command line
option where ‘PROPERTY’ can be one of the values ‘none’, ‘full’; or ‘modelchecking’. If no
value is given, ‘modelchecking’ is used as default.

4.1.1 Check nothing (‘--check=none’)

LoLA only performs preprocessing but does not do any actual state space exploration. This
option is useful for checking whether the input is syntactically correct, or for getting information
from preprocessing.

$ lola --check=none phils10.lola
lola: reading net from philsi10.lola

lola: checking nothing (--check=none)

4.1.2 Compute the state space (‘--check=full’)

LoLA explores the reachable states without evaluating any particular property. This option is
useful for experiencing the size of a state space.

( )

$ lola --check=full phils10.lola
lola: reading net from philsi0.lola

lola: building the complete state space (--check=full)

lola: result: no

lola: 59048 markings, 393650 edges

- )

4.1.3 Verify a property in temporal logic (‘--check=modelchecking’,
default)

LoLA evaluates a property specified in LTL or in CTL. The particular property is passed to LoLA
by the command line option ‘--formula=FORMULA’. The value ‘FORMULA’ is either a string that
directly describes a formula, or file name that contains such a string. For linear time properties,
the formula can be replaced by a Biichi automaton. In this case, LoLA searches for a path that
is accepted by the given automaton. The automaton is passed to LoLA by the command line
option ‘--buechi=STRING’ where ‘STRING is a file name containing the description of a Biichi
automaton.
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-

$ lola --formula="EF ea.2 > 0" philsl0.lola

lola: reading net from philsi0.lola

lola: finished parsing

lola: closed net file phils10.lola

lola: 90/65536 symbol table entries, O collisions
lola: preprocessing net

lola: computing forward-conflicting sets

lola: computing back-conflicting sets

lola: 60 transition conflict sets

lola: finding significant places

lola: 50 places, 40 transitions, 30 significant places
lola: read: EF (ea.2 > 0)

lola: formula lenght: 13

lola: checking reachability

lola: processing formula

lola: processed formula: -ea.2 <= -1

lola: processed formula lenght: 11

lola: processed formula with 1 atomic propositions
lola: formula mentions 1 of 50 places; total mentions: 1
lola: using a bit-perfect encoder (--encoder)

lola: using 120 bytes per marking, with O unused bits
lola: using a prefix store (--store)

lola: checking a formula (--check=modelchecking)

lola: finished preprocessing

lola: result: yes

lola: The net satisfies the given formula.

lola: 3 markings, 2 edges

lola: killed reporter thread

-

4.2 Implicitly supported properties

Throughout this section, let a state predicate be a temporal logic formula that does not contain
temporal operators. It describes properties that can be satisfied or violated by individual states,

regardless of subsequent reachable states.

4.2.1 Reachability

If you want to check reachability of a state that satisfies a given state predicate P, you should

apply the command line option ‘--formula="EF P"’. LoLA will recognize this formula as a

reachability query and apply specialized techniques for its evaluation.

-

$ lola --formula="EF (ea.2 > 0 AND ea.3 > 0)" phils10.lola
lola: reading net from philsi0.lola

lola: checking reachability

lola: result: no

lola: The net does not satisfy the given formula.
lola: 28098 markings, 44878 edges

-

~

4.2.2 Invariance

If you want to check whether a state predicate P is satisfied by all reachable states, you should

apply the command line option ‘--formula="AG P"’. LoLA will transform this formula into a

reachability query for =P and apply specialized techniques for its evaluation.
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-

$ lola --formula="AG (ea.2 = 0 OR ea.3 = 0)" philsi0.lola
lola: reading net from philsi0.lola

lola: checking invariance

lola: result: yes

lola: The net satisfies the given formula.
lola: 28098 markings, 44878 edges

-

4.2.3 Deadlocks

LoLLA checks for the existence of deadlock markings. A deadlock marking is a marking where
no transition is enabled. LoLA aborts state space exploration as soon as it detects the first such
state. If other options permit, the found state, and a sequence of transitions leading from the
initial marking of the found state can be reported.

-

$ lola --formula="EF DEADLOCK" phils10.lola
lola: reading net from philsl0.lola

lola: checking reachability of deadlocks
lola: result: yes

lola: The net satisfies the given formula.
lola: 29 markings, 37 edges

-

4.2.4 k-boundedness of a place

If you want to check whether a certain place p is k-bounded, for a given bound k, you should
apply the command line option ‘--formula="AG p <= k"’. LoLA will transform this formula
into a reachability query for p > k and apply specialized techniques for its evaluation.

-

$ lola --formula="AG hl.3 <= 1" philsl0.lola
lola: reading net from philsi10.lola

lola: read: AG (hl.3 <= 1)

lola: formula length: 14

lola: checking invariance

lola: processing formula

lola: processed formula: hl.3 > 1

lola: result: yes

lola: The net satisfies the given formula.
lola: 31787 markings, 54070 edges

-

4.2.5 k-boundedness of the whole net

For checking whether the whole net is k-bounded, you can repeat the k-boundedness check for
each place individually. State spaces that preserve k-boundedness of a single place are orders
of magnitude smaller than a state space that preserves that property for all places at once.
Consequently, chances are that the proposed approach replaces a single state space that does
not fit into memory by many state spaces that do fit into memory. Since it is quite easy to run
LoLA in shell scripts, the repeated application of LoLLA is quite well manageable.

4.2.6 Boundedness of a place

If you want to check whether a certain place p is bounded (i.e., there exists a k such that p is k-
bounded), you should apply the command line options ‘--encoder=full’ and ‘--formula="AG
p < oo"’. Thereby, ‘oo’ stands for w, representing a boundary for arbitrary tokens on the place.
With the ‘--search=cover’ parameter, the coverability graph is built which is guaranteed to be
finite even for unbounded nets. Finally, ‘-—encoder=full’ chooses a special marking encoder
which is required in combination with the coverability graph, see [Encoding], page 25.



Chapter 4: Supported Properties 16

( )
$ lola --search=cover --encoder=full --formula="AG
Sent2Disp.<NEC-MT1065|Doc2|FALSE> < oo" planner.lola
lola: reading net from planner.lola

lola: checking invariance

lola: using coverability graph (--search=cover)
lola: result: no

lola: The net does not satisfy the given formula.
lola: 417 markings, 680 edges

-

4.2.7 Boundedness of the whole net

For checking whether the whole net is bounded, you can repeat the boundedness check for each
place individually. Coverability graphs that preserve boundedness of a single place are orders of
magnitude smaller than a coverability graph that preserves that property for all places at once.
Consequently, chances are that the proposed approach replaces a single coverability graph that
does not fit into memory by many coverability graphs that do fit into memory. Since it is quite
easy to run LoLA in shell scripts, the repeated application of LoLA is quite well manageable.

4.2.8 Dead transition

A transition is dead in a given marking m if it is not enabled in any marking reachable from m.
If you want to check whether a certain transition ¢ is dead in the initial marking, you should
apply the command line option ‘--formula="AG NOT FIREABLE(%t)"’. LoLA will transform this
formula into a reachability query for a state predicate that expresses the negated enabling
condition of ¢ and apply specialized techniques for its evaluation.

-

$ lola --formula="AG NOT FIREABLE(tl.[y=3])" phils10.lola
lola: reading net from philsi10.lola

lola: checking invariance

lola: processed formula: (-th.3 <= -1 AND -fo0.3 <= -1)
lola: result: no

lola: The net does not satisfy the given formula.

lola: O markings, O edges
-

4.2.9 Quasi-liveness

A net is quasi-live if it does not have any dead transition. You can check quasi-liveness by
applying the dead transition check for each transition individually. State spaces that preserve
single dead transitions are orders of magnitude smaller than state spaces that preserve quasi-
liveness. Consequently, chances are that the proposed approach replaces a single state space
that does not fit into memory by many state spaces that do fit into memory. Since it is quite
easy to run LoLA in shell scripts, the repeated application of LoLA is quite well manageable.

4.2.10 Liveness of a transition

A transition is live if it not dead in any reachable marking. If you want want to check whether
a certain transition ¢ is live, you should apply the command line option ‘--formula="AGEF
FIREABLE(t)"’. In the current release, LoLA evaluates this query by a CTL model checking
algorithm. However, upcoming releases will transform this formula into a specialized query,
with dedicated state space reduction techniques.
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-

$ lola --formula="AGEF FIREABLE(tl.[y=3])" phils10.lola
lola: reading net from philsi0.lola

lola: checking liveness

lola: processed formula: !(E(TRUE U !(E(TRUE U (-th.3 <= -1 AND -fo0.3 <= -1)))))
lola: result: mno

lola: The net does not satisfy the given formula.

lola: 3113 markings, 12969 edges
-

4.2.11 Liveness of the net

A net is live if all its transitions are live. You can check liveness by applying the live transition
check for each transition individually. State spaces that preserve single live transitions are orders
of magnitude smaller than state spaces that preserve liveness of the whole net. Consequently,
chances are that the proposed approach replaces a single state space that does not fit into
memory by many state spaces that do fit into memory. Since it is quite easy to run LoLA in
shell scripts, the repeated application of LoLA is quite well manageable.

4.2.12 Liveness of a state predicate

A state predicate is live if it is reachable from all reachable markings. If you want to
check whether a certain predicate P is live, you should apply the command line option
‘—-—formula="AGEF P"’. In the current release, LoLA evaluates this query by a CTL model
checking algorithm. However, upcoming releases will transform this formula into a specialized
query, with dedicated state space reduction techniques.

( )
$ lola --formula="AGEF hl.1 > 0" phils10.lola
lola: reading net from philsi0.lola

lola: checking liveness
lola: processed formula: !(E(TRUE U !(E(TRUE U -hl.1 <= -1))))

lola: result: yes

lola: The net satisfies the given formula.
lola: 59048 markings, 500013 edges

-

4.2.13 Reversibility

A net is reversible if the initial marking is reachable from every reachable state. If you want
to check reversibility for a net, you should apply the command line option ‘--formula="AGEF
INITIAL". In the current release, LoLA evaluates this query by a CTL model checking algorithm.
However, upcoming releases will transform this formula into a specialized query, with dedicated
state space reduction techniques.
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-

$ lola --formula="AGEF INITIAL" phils10.lola

lola: reading net from philsi0.lola

lola: checking liveness

lola: processed formula: !(E(TRUE U !(E(TRUE U
CCCCCCCCCCCCCCCCCCaCCaerCaaerreeeeeeCC((((fo.10 <= 1 AND -fo.10 <= -1) AND (ea.l1 <=0
AND -ea.l <= 0)) AND (ea.2 <= 0 AND -ea.2 <= 0)) AND (ea.3 <= 0 AND -ea.3 <= 0)) AND (ea.4 <=0
AND -ea.4 <= 0)) AND (ea.5 <= 0 AND -ea.5 <= 0)) AND (ea.6 <= 0 AND -ea.6 <= 0)) AND (ea.7 <=0
AND -ea.7 <= 0)) AND (ea.8 <= 0 AND -ea.8 <= 0)) AND (ea.9 <= 0 AND -ea.9 <= 0)) AND (hr.10 ...
(shortened)

lola: formula mentions 50 of 50 places; total mentions: 100

lola: result: no

lola: The net does not satisfy the given formula.
lola: 56664 markings, 207532 edges

-

4.2.14 Causal precedence of a transition

Transition t causally precedes a state predicate P if every path from the initial marking to a
marking satisfying P contains an occurrence of ¢. If you want to check causal precedence, you
can either directly represent it as a terribly complicated CTL formula, or you can add a new place
q with a single initial token to your net and make it a pre-place of t. Then check reachability
of P AND (g = 1). t causally precedes P if and only if that reachability check returns ‘no’. The
latter approach has the advantage that LoLA can apply its reachability checks and is not forced
into general model checking algorithms.

4.2.15 Relaxed Soundness of a workflow net

A workflow net has a distinguished source place and a distinguished sink place. Initially, only
the source place is marked. It is desired that finally only the sink place is marked.

A workflow net is relaxed sound if, for each transition ¢, there is a path from the initial to the
final marking that contains ¢. In LoL A, relaxed soundness can be checked by verifying, for each
transition ¢ individually, causal precedence of ¢ with respect to a state predicate that describes
the final marking: p1 = 0 AND ... AND pn = O AND sink = 1.

4.2.16 Soundness of a workflow net

A workflow net is sound if the final marking is reachable from all reachable markings, and the
net has no dead transitions. This amounts to liveness of a state predicate that describes the
final marking, e.g. p1 = 0 AND ... AND pn = O AND sink = 1, and checking for dead transitions,
as described above. Again, we recommend to split the soundness check into many individual
runs of LoLA.

4.3 Unsupported properties

Home states. A marking is a home state if it is reachable from every reachable marking. For
a given marking, this can be checked as a liveness of a state predicate where the predicate
describes the candidate marking. However, the question whether the net has home markings
cannot be answered with this release.

4.4 General recommendations

Divide and conquer. If you can separate a global query into many local queries (as for liveness
of a net versus liveness of all transitions), you should do so. The global property will always
have a much higher probability to run out of memory than the worst local verification problem.

Stay simple. If you can express your problem as a reachability or deadlock problem, you should
do so. Consider the possibility that this reduction can be achieved through a modification of the
net itself, as demonstrated above for causal precedence. The particular strength of LoLA is on
reachability checking. Here, technology is most advanced, and the number of available methods
is larger than for any other class of properties.
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5 Search strategies

LoLLA offers several search strategies for exploring the state space. Several features depend on
this choice: run time, whether or not you can get a witness path, its length, and whether or not
state space exploration is exhaustive.

You select the search strategy using the command line option ‘~-search=SEARCH’ where ‘SEARCH’
is one of the values ‘depth’, ‘sweep’, ‘findpath’, or ‘cover’. If no value is given, ‘depth’ is used
as default search strategy.

5.1 Available values

5.1.1 Depth first search (‘--search=depth’, default)

LoLLA explores the state space in depth first order. This is the fastest among the exhaustive
strategies. Witness paths can be produced but are not necessarily the shortest possible witnesses.

5.1.2 Sweep-line method (‘--search=sweep’)

The sweep-line method depends on a progress measure assigned to states and explores states
in ascending progress order. States with progress value smaller than the current explored ones
are removed from memory. Thus, the sweep-line method requires less space than depth-first
or breadth-first search. If states are reached that have potentially been removed before, they
are stored permanently, and their successors are explored (in subsequent “rounds”). Hence, the
state space is explored exhaustively.

LoLA computes the required progress measure automatically. Self-defined measures are not
supported. The sweep-line method is only available if the given property can be reduced to
a simple reachability problem. Otherwise, LoLA applies depth-first search anyway. Using the
sweep-line method, no witness path can be produced. Since some markings may be visited after
prior removal, the numbers of visited markings and fired transitions is generally larger than with
depth-first search (but peak memory usage can be smaller).

o Karsten Wolf. Automated Generation of a Progress Measure for the Sweep-Line Method.
STTT, 8(3):195-203, June 2006.

-

$ lola --formula="EF DEADLOCK" --search=sweep phils10.lola
lola: reading net from phils10.lola

lola: calculating the progress measure
lola: checking reachability of deadlocks

lola: using sweepline method (--search=sweepline)

lola: transition progress range [-3,1], transients in [-3,1]
lola: using 200 bytes per marking, including O wasted bytes
lola: using 120 bytes per marking, with O unused bits

lola: 82 persistent markings, 27 transient markings (max)
lola: result: yes

lola: The net satisfies the given formula.

lola: 109 markings, 410 edges

-

5.1.3 Memoryless search (‘--search=findpath’)

LoLA explores the state space without recording visited states at all. It stops if, by chance,
a state witnessing the given property is encountered. Witness paths produced by this method
may contain cycles and are not necessarily the shortest possible witness paths. The search is
not exhaustive.
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If a certain depth is exceeded, search resets to the initial state and explores another path
(transitions are randomly selected). The depth at which LoLA resets to the initial state can be
controlled using the ‘~-depthlimit=DEPTH command line option where ‘DEPTH’ is any integer
greater than 1. The default depth limit is one million.

With another command line option, ‘~-retrylimit=RETRIES’, you can force LoLA to terminate
after ‘RETRIES’ resets to the initial marking. In the result part, LoLA pretends that the desired
marking has not been found (which may be wrong since search is not exhaustive). If ‘RETRIES’
is set to 0, LoLA goes on forever, exploring an unlimited number of paths each having length
‘DEPTH’ (unless the desired state is found). This search strategy is available only if the given
property can be transformed into a simple reachability query. Otherwise, LoLA performs depth-
first search anyway.

o Karsten Schmidt. LoLA wird Pfadfinder. In 6. Workshop Algorithmen und Werkzeuge fiir
Petrinetze (AWPN’99), Frankfurt, Germany, October 11.-12., 1999, volume 26 of CEUR
Workshop Proceedings, pages 48-53, October 1999. CEUR-WS.org.

-

$ lola --search=findpath --formula="EF FIREABLE(t520)" garavel.lola
lola: reading net from garavel.lola

lola: checking reachability

lola: starting randomized, memory-less exploration (--search=findpath)
lola: searching for paths with maximal depth 1000000 (--depthlimit)
lola: no retry limit given (--retrylimit)

lola: transitions are chosen hash-driven

lola: result: yes

lola: The net satisfies the given formula.

- J

5.1.4 Coverability graph (‘--search=cover’)

LoL A computes the coverability graph instead of a reachability graph. The coverability graph
stores limits of sequences of markings rather than individual markings and is always finite (while
the state space of a Petri net may be infinite. Verification results obtained from a coverability
graph may be imprecise, that is, you may get unknown as a verification result. If LoLA returns
yes or no, validity of that result is asserted by coverability graph theory, though. LoL A explores
a coverability graph in breadth first order (which has superior performance here). Witness states
derived from coverability graphs may assign omega (printed as ‘oo’ to some places meaning that
arbitrarily large numbers of tokens may be put on them. If omega appears in a witness state,
the corresponding witness path contains subsequences that are marked as repeating. Executing
such parts increasingly often, you can replay a sequence of markings that produces increasing
number of tokens on the places marking with omega.

5.2 Setting resource limits

A state space may easily grow larger than the available physical memory. Once starting to
use swap space, LoLA will get incredibly slow and you should abort it. If you do not want to
observe and kill LoLA manually, you can set two limits that cause LoLA to quit before having
explored the whole state space. With ‘--timelimit=SECONDS’, you can force LoLLA to quit after
‘SECONDS’ seconds of work. With ‘--markinglimit=MARKINGS’ you can force LoLA to quite
after having explored ‘MARKINGS’ markings. Both values are integer. The default is that LoLA
runs forever and produces arbitrarily many markings.
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5.3 Best practice

Normally, depth first search is the option of your choice. If depth first search runs out of memory,
and your property can be transformed into a simple reachability query, you may try the sweep-
line method next. Memoryless search is useful if all other methods fail, or can be run in parallel
on a second machine. If you need to manually inspect a witness path and depth-first search
produces a prohibitively long one, you may run the same query in breadth-first mode for trying
to get a shorter path.

You should be aware that you have other options for reducing the memory consumption of state
space exploration. You may try other state space reduction techniques, and you can switch to
a different storage model (see the appropriate chapters of this manual).
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6 Reduction techniques

LoLA is the tool that offers the broadest variety of state space reduction techniques in the
realm of explicit state exploration. Each individual technique has unique features. In addition,
the opportunities to combine different reduction techniques are unprecedented. Most reduction
techniques unfold their full power when applied to simple properties, especially to reachability
and deadlock checking.

6.1 Partial order reduction: the stubborn set method

6.1.1 The method

The stubborn set method is one of the independently developed methods that are collectively
called partial order reduction. At each marking, a subset of transitions is computed (called a
stubborn set) and only enabled transitions from the stubborn set are explored. Stubborn set cal-
culation follows rules that assure that desired properties are preserved in the reduced state space.
We believe that partial order reduction, including the stubborn set method, is the most powerful
state space reduction technique and has a decisive impact on the alleviation of state explosion.
On the other hand, its application does not cause any remarkable disadvantages. Even the run-
time penalty for computing stubborn sets in every marking tends to be moderate. Moreover, we
experienced that some search strategies (‘--search=findpath’ and ‘--search=sweep’) as well
as some other state space reduction techniques (e.g. ‘--cycle’) unfold their power only if applied
in combination with the partial order reduction. For these reasons, the stubborn set method is
always applied if actual properties are explored (option ‘--check=modelchecking’) while it is
switched of in full state space generation (‘--check=full’) and irrelevant for ‘--check=none’.

6.1.2 Unique features in LoLA

In the current release of LoLA, stubborn sets are applied to deadlock checking and for checking
properties that can be transformed into reachability problems. For deadlock checking, we use
the established method by Valmari, 1989. For reachability, we use a unique dedicated technique.
Unlike methods that preserve whole temporal logics, our approach does not require presence of
so-called invisible transitions (transitions that do not alter elementary propositions of the given
property). That is, we can get substantial reduction where a general LTL or CTL model checker
would not.

e Karsten Schmidt. Stubborn Sets for Standard Properties. In Applications and Theory
of Petri Nets 1999: 20th International Conference, ICATPN’99, Williamsburg, Virginia,
USA, June 1999. Proceedings, volume 1639 of Lecture Notes in Computer Science, pages
46-65, June 1999. Springer-Verlag.

e Lars Michael Kristensen, Karsten Schmidt, and Antii Valmari. Question-Guided Stub-
born Set Methods for State Properties. Formal Methods in System Design, 29(3):215-251,
November 2006.

6.1.3 Options

Generally, there are several stubborn sets that meet the requirements for property preservation
in a given marking. If the enabled transition in one stubborn set is a subset of another, the
smaller one is always to be preferred as it will result in better reduction. If it contains less
enabled transitions but they are not included in the other stubborn set, either one may cause
better reduction. Two styles of computing stubborn sets are available. The first one (activated
with ‘--stubborn=tarjan’) investigates a dependency graph between transitions. It has linear
time complexity and it does not necessarily result in inclusion-minimal stubborn sets. This
is the default if no ‘--stubborn’ option is present at the command line. The second option
(activated with ‘--stubborn=deletion’) applies a technique where iteratively transitions are
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removed from the set of all transition until it is not possible to remove any further transition
without violating the requirements for property preservation. This technique has quadratic run
time complexity but results in inclusion-minimal stubborn sets.

6.1.4 Best practice

If you expect that a deadlock or a witness state is present in your state space,you should prefer
‘-—stubborn=tarjan’. It explores more states per time unit, tends to attract exploration quickly
to a satisfying state in reachability checks, and tends to produce witness paths of reasonable
length. If you expect that no deadlock or no specified state is reachable, you should prefer
‘~-stubborn=deletion’. In this case, ultimately the whole state space is explored and the
slower exploration rate is more than compensated by the significantly smaller number of states.
If you have two machines available, it makes sense to run LoLA on both. Here, the deletion
version should be run on the machine with more available memory: If the ‘tarjan’ version does
not find a state quickly, the ‘deletion’ version is more likely to do the job.

6.2 The symmetry method

6.2.1 The method

Symmetric structure implies symmetric behavior. Thus, symmetry detected on the net structure
can be used to fold the state space: if two markings are identical up to symmetry, only one of
them needs to be explored.

6.2.2 Unique features in LoLA

LoLA investigates symmetries by inspecting the graph automorphisms present in the Petri net
itself and the investigated formula (if applicable). The result is a generating set. Through graph
automorphisms, any shape of symmetrical structure in a Petri net can be detected (while many
other tools are restricted to distinguished symmetry patterns such as “scalar sets”). During state
space exploration, each encountered marking is transformed into a lexicographically smaller but
symmetric one. Symmetry is detected through identity between the transformed images of
the original marking. LoLA does not dare to transform a marking into the lexicographically
smallest symmetric one as there are no polynomial solutions known for that task which needs to
be executed at each encountered marking. Thus, the reduced state space is not necessarily the
smallest one that could be theoretically obtained by the symmetry method. On the other hand,
the applied method guarantees a moderate run-time penalty during state space exploration.
Unfortunately, the actual investigation of graph automorphisms during pre-processing may be
time-consuming, so the method can be switched off.

e Karsten Schmidt. How to Calculate Symmetries of Petri Nets. Acta Inf., 36(7):545-590,
2000.

e Karsten Schmidt. Integrating Low Level Symmetries into Reachability Analysis. In Su-
sanne Graf and Michael I. Schwartzbach, editors, Tools and Algorithms for the Construction
and Analysis of Systems: 6th International Conference, TACAS 2000, Held as Part of the
Joint Furopean Conferences on Theory and Practice of Software, ETAPS 2000, Berlin,
Germany, March/April 2000. Proceedings, volume 1785 of Lecture Notes in Computer
Science, pages 315-330, March 2000. Springer-Verlag.

6.2.3 Options

With ‘--symmtimelimit=SECONDS’, you can set a limit for the time LoLA spends on symmetry
calculation. If the time limit is exceeded, LoLA will leave symmetry calculation and use the
symmetries encountered so far for state space reduction. This does not jeopardize correctness,
but may lead to a significantly larger state space. Alternatively, pressing CTRL+c during sym-
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metry calculation has the same effect. LoLA will not necessarily leave symmetry calculation
promptly, as it needs to leave in a well-defined state.

6.2.4 Best Practice

Computing symmetries may take time but is usually worth it. In rare cases, the generating set
can exceed available memory. Then, setting a time limit may be useful. If you know that your
Petri net has no symmetry, you do not want to use the symmetry method since LoLA may need
some time to find out. If you believe that your system is symmetric but LoLA does not find
symmetries, you may want to check your model or its translation to the LoLA format. It is quite
easy to break symmetry, for instance through sequential initialization of otherwise concurrent
processes.

6.3 Cycle reduction

6.3.1 The method

When this technique is switched on, LoLA investigates linear dependencies between the transi-
tion firing vectors and obtains information about transition sequences that form cycles in the
state space. This is done during pre-processing. During actual state space exploration, only
a subset of encountered markings is actually stored while other markings, if re-visited, are ex-
plored again. The pre-processed information is used for taking care that the markings that are
not stored do not form cycles. Thus, termination is guaranteed.

6.3.2 Unique features in LoLA

The method as such is unique. It is an example for the benefits that Petri net structure theory
provides in state space verification.

e Karsten Schmidt. Using Petri Net Invariants in State Space Construction. In Hubert
Garavel and John Hatcliff, editors, Tools and Algorithms for the Construction and Analysis
of Systems (TACAS 2003), 9th International Conference, Part of ETAPS 2003, Warsaw,
Poland, volume 2619 of Lecture Notes in Computer Science, pages 473-488, April 2003.
Springer-Verlag.

6.3.3 Options

The method is activated by the ‘~-cycle’ command line option. It is used only if the explored
property is deadlock checking or a simple reachability query. The method may cause a prohibitive
increase of run time. For alleviating that problem, a heuristic parameter has been introduced
that can be set by ‘--cycleheuristic=K’. Small values produce less reduction but better
run-time while large values cause better reduction but longer run-time. Correctness of the is
independent of this value.
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7 Storage concepts

For managing visited markings, LoLLA performs two tasks. First, it transforms a marking into
a sequence of bits. Second, it handles a data structure where such sequences can be searched
(for finding out whether that marking had been seen before) and inserted (if they have not been
seen). In LoLA, the two tasks are separated. We call the first task encoding and the second one
storing. For both task, LoLA offers several solutions that can be selected independently.

7.1 Encoding

With encoding, you can control the length of a bit vector that is stored later on as a represen-
tation of a marking in the main memory. If your focus is on getting to the memory limits, you
want to choose strong compression with some runtime penalty. If your focus is on runtime while
you believe to have sufficient memory resources, you may choose a weaker compression.

You select the encoding with the ‘-—encoder=ENCODER’ option on the command line. ‘ENCODER’
can be any of the following values: ‘bit’, ‘copy’, ‘simplecompressed’, or ‘fullcopy’. The
default value is ‘-—encoder=bit’. LoLA uses three sources for compression: capacities, variable
length encoding, and place invariants.

7.1.1 Compression by capacities

When specifying a Petri net, you can use the SAFE i statement in the place declaration list.
Using that statement, you promise that no reachable marking will ever have more than ¢ tokens
on the concerned places. LoL A will compute the number of bits that are necessary to represent
all values between 0 and ¢ and compress a marking into a bit sequence where every place gets
exactly the computed number of bits.

The coding is dense, i.e. the number is not rounded up to full bytes for all individual places.
Only at the end of the complete bit vector, a few bits may be wasted. If a place is declared
without a ‘SAFE i’ statement, 32 bits are reserved for that place. If compression by capacity is
not used, the marking of each place is represented by 32 bits.

Compression by capacity is useful if your model has a significant number of places where small
capacities are known by construction. Many translations from other formalisms into Petri nets
result in 1-safe Petri nets. If that fact is disclosed to LoLA using the ‘SAFE 1’ statement in the
net input file, only one bit per place is stored in every reachable marking.

( )

$ cat phils10.lola
PLACE SAFE 1:
ea.l, ea.2, ea.3, ea.4, ea.b, ea.6, ea.7, ea.8, ea.9, hl.1, fo.1, hl.2, fo.2,

$ lola --encoder=bit phils10.lola --check=none
lola: using a bit-perfect encoder (--encoder)

lola: using 4 bytes per marking, with 2 unused bits
$ lola --encoder=copy philsl10.lola --check=none

lola: using a copy encoder (--encoder)
lola: using 120 bytes per marking, including O wasted bytes

Q.. )

7.1.2 Variable length encoding

This encoding scheme supports nets where no bounds for the places are known in advance. It
uses the assumption that even in unbounded nets or nets with large bounds, small values occur
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more frequently than large values. Consequently, short bit sequences are related to small values
and larger sequences to large values. The compression is not as strong as in the case of tight
known bounds but better than shipping uncompressed bit sequences. Since the length of a bit
sequence varies, LoLA does not report any bit vector length.

7.1.3 Compression by place invariants

A place invariant is a mapping that assigns a weight to each place such that all reachable
markings get the same weighted token sum. Invariants correspond to solutions x of the linear
System of equations Cz = 0 where C' is the incidence matrix of the Petri nets. Having such a
place invariant, the number of tokens on one place p with nonzero weight is fully determined
by the number of tokens on the remaining places and the constant overall weight (which can be
calculated for the initial marking). In other words, if two markings do not differ on any place
except p, they are equal on p as well. We call p an insignificant place. Since a Petri net may
have several place invariants, more than one place may be insignificant.

During preprocessing, LoLLA analyzes the linear dependencies in the incidence matrix and comes
up with a factoring of the place set into significant and insignificant places. When compression
by place invariants is active, LoLA only ships significant places to the resulting bit vector.
Typically, compression by place invariants reduces the length of the resulting bit vector to 30—
70 percent of the original size. Since experience tells that preprocessing does not require much
run time, its use is strongly recommended.

For efficiency reasons, LoLA only determines whether a place is insignificant but not how. That
is, LoLA does not fully explore place invariants and does not store them permanently. For this
reason, bit vectors in the store, although uniquely characterizing a marking, cannot be used
to restore a full marking for later use. If such functionality is ever useful (in future releases),
switching off compression by capacities may make sense. During preprocessing, LoLA reports
the number of significant places. This way, the user can easily experience the compression ration
through place invariants.

e Karsten Schmidt. Using Petri Net Invariants in State Space Construction. In Hubert
Garavel and John Hatcliff, editors, Tools and Algorithms for the Construction and Analysis
of Systems (TACAS 2003), 9th International Conference, Part of ETAPS 2003, Warsaw,
Poland, volume 2619 of Lecture Notes in Computer Science, pages 473-488, April 2003.
Springer-Verlag.

$ lola phils10.lola --check=none

lola: finding significant places
lola: 50 places, 40 transitions, 30 significant places

7.1.4 Meaning of the values
The values for ‘ENCODER’ have the following meaning:

e ‘——encoder=bit’ (default value). Use compression by capacity and compression by place
invariants. This is the best option for nets with known tight bounds for many places and
exhaustive search.

e ‘——encoder=copy’ Use compression by place invariants only. This may be an option if
memory is not at stake, or the Bloom store is used (see [Store|, page 27).

e ‘——encoder=simplecompressed’ Use compression by place invariants and variable length
encoding. This may be useful if no tight bounds for places are known.

e ‘——encoder=fullcopy’ Do not apply any compression. This value is strongly deprecated.
We use it for comparing the effect of the other encodings.
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7.2 Store

During state space exploration, LoLA maintains a store. A store contains information on whether
or not a marking (i.e. an encoded bit sequence) had been visited before. LoLA supports several
data structures for organizing its store. The decision for a particular store includes the decision
on whether or not state space exploration is exhaustive, regardless of the applied search strategy.

You can select a particular data structure using the ‘--store=STORE’ option on the command
line. Possible values for ‘STORE’ include ‘prefix’ (the default value), ‘bloom’, ‘comp’, and ‘stl’.

7.2.1 Prefix tree (‘--store=prefix’, default)

This data structure merges common prefixes of stored bit sequences. If a new bit sequence
arrives from the encoder, LoLA identifies the largest prefix that this sequence has in common
with any other stored sequence and stores only those bits that do not belong to that prefix.
Systematic traversal of the sequence fragments is realized by some constant-size management
overhead. Prefix trees are the strongest storage concept in LoLA for exhaustive state space
exploration.

7.2.2 Bloom filter (‘--store=bloom’)

This data structure does not store states at all. It rather records hash values obtained from
the encoded bit sequences. If, for a new bit sequence, the hash value has not been recorded
before, it is treated as new (which is always sound). If the hash value has not been recorded, the
sequence is treated as already visited (which may be wrong due to hash collision). Consequently,
the Bloom filter store is inherently incomplete since, in case of a hash conflict, only one of the
conflicting markings is explored.

Risk of hash conflicts can be reduced by operating on multiple hash tables, each using a hash
function that is stochastically independent of the others. You can control the number of hash
functions to be used by the ‘--hashfunctions=INT command line options. If that option is
absent and Bloom filtering is used, LoLA operates on two hash functions.

During state space exploration, the probability of a false positive is printed:
( N

$ lola phils1000.lola --check=full --store=bloom

lola: 95278 markings, 427819 edges, 19056 markings/sec, 0 secs

lola: 2147483648 hash table size false positive probability: 0.0000000079

lola: 188148 markings, 849006 edges, 18574 markings/sec, 5 secs

lola: 2147483648 hash table size false positive probability: 0.0000000307

U J

Furthermore, the statistically optimal number of hash functions to minimize this probability is
printed once the exploration is completed:

( )
$ lola philsi0.lola --check=full --store=bloom

lola: Bloom filter: probability of false positive is 0.0000000030
lola: Bloom filter: optimal number of hash functions is 15.2
$ lola phils10.lola --check=full --store=bloom --hashfunctions=15

lola: Bloom filter: probability of false positive is 0.0000000000
lola: Bloom filter: optimal number of hash functions is 15.2

\... )

Note that using the Bloom filter yields inconclusive results in case no witness state was found:
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~
$ lola philsi0.lola --formula="EF (ea.l = 1 AND ea.2

1)" --store=prefix

lola: result: no
lola: The net does not satisfy the given formula.
lola: 28098 markings, 44878 edges

$ lola phils10.lola --formula="EF (ea.l1l = 1 AND ea.2 = 1)" --store=bloom

lola: result: unknown

lola: The net may or may not satisfy the given formula.
lola: 28098 markings, 44878 edges

-

7.2.3 STL store(‘--store=stl’)

Use the set data type of the C++ Standard Template Library (STL) for storing bit sequences.
This value is strongly deprecated. We use it for teaching our students the principle functionality
of a store, and for enjoying the superior performance of prefix trees and Bloom filters compared
to this one.

7.2.4 Comparison store(‘--store=comp’)

This is a debugging option only. It manages two other stores concurrently (e.g. a trusted
implementation and a new data structure) and checks whether they agree on search queries.

-
$ lola philsl4.lola --store=prefix --check=full

lola: using a prefix store (--store)

lola: 4782968 markings, 44641030 edges

$ lola philsl4.lola --store=bloom --check=full
lola: using a specialized store (--store)

lola: 4782928 markings, 44640646 edges

$ lola philsi4.lola --store=bloom --hashfunctions=1 --check=full

lola: 4763253 markings, 44454472 edges

(..

7.3 Useful combinations of encoder and store

If you want to explore the state space exhaustively, you should use the prefix tree store in
combination with a strongly compressing encoder. In case of bounds for places that are recorded
in the net input file, the bit encoder is the best option. This particular combination does not
require any command line specification as this is the default setting. In case of unknown bounds
for places, you may want to try the simplecompressed encoder.

If you are satisfied with a potentially incomplete exploration (be it that you use LoLA for de-
bugging only, be it that exhaustive search ran out of memory), you want to use the Bloom
filter store. Encoding is not as important as for exhaustive search since markings are reduced
to hash values anyway. However, shorter bit sequences require less complex computations for
determining the hash value of a marking. For this purpose, you should use an encoder that
at least uses the compression by place invariants since this compression comes at no cost (ex-
cept pre-processing). In other words, any encoder other than the fullcopy encoder is fine in
combination with the Bloom filter store.
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If you select ‘--search=findpath’ as your search strategy ([Memoryless search], page 19), you
do not need to worry about encoders nor stores at all since that search strategy does not keep
any information about visited markings.
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8 Output formats

LoLA will output runtime information on standard error. This output is purely informational
and may change in future versions. If you want to process information, we advice using the
JSON output, see [JSON], page 31.

You can silence all output using the ‘~-quiet’ parameter.

(% lola --formula="EF DEADLOCK" --quiet phils10.lola :

8.1 Markings

Depending on the property and the outcome of the analysis, LoLA can provide a marking
that demonstrates why the property is (not) satisfied). The marking is printed with the
‘-—state=FILE parameter. If no filename ‘FILE’ is given, the state is printed on standard
output.

The output lists the names of all marked places, followed by a colon (‘:’) and the number of

tokens on the place or ‘oo’ in case the place is unbounded. Note place names are not necessarily
sorted alphabetically and unmarked places are not printed.

s
hl.
hl.
hl.
hl.
hl.
hl.
hl.
hl.
hl.

hl.
-

= O 00 N UL WN =
N

The marking can also be printed in JSON format, see [JSON], page 31.

8.2 Paths

Depending on the property and the outcome of the analysis, LoLA can provide a path from
the initial marking to a marking that demonstrates why the property is (not) satisfied) (see
[Markings|, page 30). The path is printed with the ‘--path=FILE’ parameter. If no filename
‘FILE’ is given, the path is printed on standard output.

The output lists the transitions. In case of CTL, LTL, or boundedness properties, the path may
contain cycles. The begin and end of the cycles is labeled with ‘===begin of cycle===" and
‘===end of cycle===") respectively.

-
tl. [y=1]
tl. [y=2]
tl. [y=3]
tl. [y=4]
tl. [y=5]
tl. [y=61]
tl. [y=7]
tl. [y=8]
t1. [y=9]
tl. [y=10]
N

The path can also be printed in JSON format, see [JSON], page 31.
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Furthermore, the path can be printed in different shapes that can be chosen with the
‘-—pathshape=SHAPE’ parameter. With ‘--pathshape=fullrun’, a distributed run is gener-
ated. With ‘--pathshape=run’, this distributed run is cropped to only those conditions that
contribute to reaching the target marking. With ‘--pathshape=event’, an event structure is
printed. The result is printed in Graphiz format (see http://www.graphviz.org).

8.3 JavaScript Object Notations (JSON)

With the command line parameter ‘--json’, LoLA outputs a JSON representation of its output
to the standard output or a given filename (e.g., ‘--json=output. json’). The result is a JSON
object whose entries are as follows:

analysis [object]
This object collects information on the performed analysis.

analysis.type [string]
The type of the analysis (the parameter given with ‘--check’).

analysis.stats [object]
This object collects information on the constructed state space.

analysis.stats.edges [number]
The number of fired transitions.

analysis.stats.states [number]
The calculated markings. Note that in case of some search strategies, not all of
these markings are actually stored.

analysis.result [boolean]
The result of the analysis. In case no result was found (e.g. due to reaching of a
resource limit), this entry is missing. In case the result is unknown (e.g. using a
Bloom store where no witness was found), the result is ‘null’.

analysis.formula [object]
This object collects information on the formula in case the analysis type is
‘modelchecking’.

analysis.formula.atomic_propositons [number]
The number of atomic propositions occurring in the formula.

analysis.formula.parsed [string]
The formula as interpreted by the parser before processing. Note this string may be
different from the original input, because the parser may add brackets and spaces.

analysis.formula.parsed_size [number]
The length of the formula before processing. This value is mostly valuable in case of
very long formulae to make a prediction about the estimated duration of processing.

analysis.formula.place_mentioned [number]
The total number of places mentioned in the formula.

analysis.formula.place_unique [number]
The unique number of places mentioned in the formula. As most reduction tech-
niques especially perform well when only a part of the net is affected, this number
gives a good hint in how “local” the property is.

analysis.formula.processed [string]
The formula as interpreted by the parser after processing. Processing tries to remove
redundancies and unfolds more complex properties (e.g. ‘FIREABLE’) or operators
(e.g. ‘<=>") to simpler ones. Note that the outmost temporal operator may be
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removed in case reachability or invariance formulae are checked — in this case, the
formula only contains the state predicate to check. See Chapter 4 [Supported Prop-
erties], page 13 fore more information.

analysis.formula.processed_size [number]

The length of the formula after processing.

analysis.formula.rule_applications [number]

The number of rewrite rules applied in preprocessing.

analysis.formula.type [string]

call

call.

call

call

call.

call

call

call.

call.

call.

The type of the formula. LoLA tries to find the most special type to choose the
most efficient algorithm. Therefore, formulae like ‘EF P’ are not checked using CTL
routines, but rather using more efficient reachability algorithms.

[object]
This object collects information on the call and caller of LoLA.

architecture [number]
The datapath width of the architecture in bits. This number is useful to check
whether the compiler version of LoLA can make use of more than 4 gigabytes of
memory (in this case, 64 bit are required).

.assertions [boolean]

Whether assertions are checked at runtime.  This setting should only be
used to debug LoLA. Make sure you configured LoLA with ‘./configure
--enable-optimizations’. See Chapter 2 [Bootstrapping LoLA], page 6 for more
information.

.build_system [string]

An identifier of the build system used to compile LoLA, including the
kernel name, kernal version, architecture, and vendor. Examples are
‘x86_64-apple-darwini3.2.0’ (OS X), ‘x86_64-unknown-1linux-gnu’ (Linux), or
‘x86_64-unknown-cygwin’ (Windows running Cygwin).

optimizations [boolean]
Whether optimizations were used at compile time. This setting should only be
switched off to debug LoLLA. Make sure you configured LoLA with ‘./configure
--enable-optimizations’. See Chapter 2 [Bootstrapping LoLA], page 6 for more
information.

.package_version [string]

The version number of LoLA. As of April 2016, the most recent version is 2.0.

.parameters [array]

An array containing the used command line parameters.

signal [string]
In case LoLA was aborted (e.g. CTRL+c), this string contains the signal that was
used internally (e.g. ‘Interrupt: 2’).

error [string]
In case of an error, a textual description thereof, for instance ‘No such file or
directory’.

svn_version [string]
If LoLA was compiled from the original source code repository, this entry con-
tains the revision number of the compiled source code. Otherwise, the value is
‘Unversioned directory’.
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call.hostname [string]
The hostname of the caller.

files [object]
This object collects information on opened files. For each file opened by LoLA,
a subobject is created that uses the purpose of the file (e.g., ‘net’, ‘formula’) as
key [string] and collects the filename (‘filename’ [string]) and the size in kilobytes
(‘size’ [number]).

limits [object]
This object contains the set limits of the execution.

limits.markings [number]
The maximal number of markings to be constructed (set with the ‘--markinglimit’
parameter). The value is ‘null’ in case no limit is provided.

limits.time [number]
The maximal runtime of LoLA in seconds (set with the ‘--timelimit’ parameter).
The value is ‘null’ in case no limit is provided.

limits.symmetrytime [number]
The maximal time LoLA may spend calculating symmetry in seconds (set with
the ‘~-symmtimelimit’ parameter). The value is ‘null’ in case no limit is provided.
Note that LoLA does not immediately terminate once the limit is reached, but rather
tries to calculate all possible symmetries from the already calculated generators.

net [object]
An object collecting information on the input net.

net.conflict_sets [number]
The number of conflict sets. A conflict set contains those transitions that are in
conflict. These sets are explicitly stored to speed up the firing of transitions.

net.filename [string]
The filename of the input net.

net.places [number]
The number of place of the input net.

net.places_significant [number]
The number of significant places of the input net, see [Compression by place invari-
ants|, page 26.

net.transitions [number]
The number of transitions of the input net.

path [array]
An array of transition names expressing a witness/counterexample path for the given
property (e.g., a path from the initial marking to a deadlock state). In case of CTL,
LTL, or boundedness properties, the path may contain cycles. In this case, the path
array contains sub-array expressing these cycles.

Note: To include this entry, use the ‘--jsoninclude=path’ parameter.
state [object]

An object expressing a witness/counterexample marking for the given property. The
marking is given as mapping from place names to integers.

Note: To include this entry, use the ‘--jsoninclude=state’ parameter.
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store [object]
An object collecting information on the used marking store, see Chapter 7 [Storage
concepts], page 25.

store.bucketing [number]
The number of buckets if bucketing is used; can be set with ‘~-bucketing=BUCKETS .

store.encoder [string]
The used state encoder, see [Encoding], page 25.

)

store.threads [number]
The number of threads used; can be set with ‘-—threads=THREADS’.

store.search [string]
The used search strategy, see Chapter 5 [Search strategies|, page 19.

store.type [string]
The used store, see [Store], page 27.

symmetries [object]
An object collecting information on the calculated symmetries.

symmetries.generators [number]
The number of generators calculated.

symmetries.dead_branches [number]
The number of dead branches visited during calculation of generators.

symmetries.represented [number]
The number of symmetries represented by the calculated generators.

8.3.1 Example
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-
{
"analysis": {

"formula": {
"atomic_propositions": 2,
"parsed": "AG (ea.l != 1)",
"parsed_size": 14,
"places_mentioned": 2,
"places_mentioned_unique": 1,
"processed": "(ea.1 > 0 AND ea.1 <= 1)",
"processed_size": 24,
"rewrites": 7,

"type": ‘"invariance"

}’

"result": false,

"stats": {

"edges": 2,
"states": 3
}7
"type": '"modelchecking"
}’
"call": {

"architecture": 64,

"assertions": false,

"build_system": "x86_64-apple-darwini4.0.0",

"error": null,

"hostname": "stewie-2.local",

"optimizations": true,

"package_version": "2.0",

"parameters": [
"--formula=AG ea.l1 != 1",
"--json=../outputl3.tmp",
"--jsoninclude=path",
"phils10.lola"

] s

"signal": null,

"svn_version": "9643:9646M"

}’
"files": {

"net": {

"filename": '"philsl0.lola",
"size": 3
}
1,
"limits": {
"markings": null,
"time": null
}’
"net": {

"conflict_sets": 60,

"filename": ‘"phils10.lola",

"places": 50,

"places_significant": 30,

"transitions": 40

}’

n ath": [
"tl . [y=1] n s
"tr. [y=1] n

] 3

"store": A

"bucketing": 16,

"encoder": "bit-perfect",

"search": '"depth_first_search",

"threads": 1,

lltypell: Ilprefixll

}

(-
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9 Error messages

In case LoLA encounters a problem, an error message is displayed together with an error code
(#01-#04), and LoLA exits with exit code 1.

A complete example looks like this:

-

$ lola --check=none net.lola

lola: reading net from net.lola
lola: place ’p5’ does not exist
lola: mnet.lola:7:9 - error near ’p5’

6 CONSUME pi1, p2;
7 PRODUCE p5;

lola: syntax error -- aborting [#01]
lola: see manual for a documentation of this error

9.1 Syntax errors [#01]

syntax error, unexpected x, expecting y
This error occurs if the input does not match the grammars described in Chapter 3
[File formats], page 9. Sometimes, an excerpt of the input file is displayed to help
locating the source of the error. However, note that diagnosing syntax errors is not
perfect, so the reported location may not be the root cause of the syntax error.

9.2 Command line errors [#02]

These errors indicate that the given command line parameters are wrong, for instance that a
required argument is missing or that a combination of arguments is incompatible.

invalid command-line parameter(s)
The command-line parameters do not match the requirements. The message is
usually combined with an indication which parameter is wrong, for instance ‘lola:
option ‘--formula’ requires an argument’. Check the help output (see ‘lola
--help’ or ‘lola --detailed-help’) for more information.

too many files given - expecting at most one
LoLA can only read at most one net file — if no file is given, LoL A reads from standard
input. The error message occurs if you called LoLA with more than one net file.
Remember formula files need to be passed using ‘--formula=myformulafile’.

--check=modelchecking given without --formula or —-buechi
In the ‘modelchecking’ mode, either a formula or a Biichi automaton must be
passed using the ‘--formula’ or ‘~-buechi’ parameter.

specified store does not fit the given task

this encoder can not decode states

this store cannot return states
Not all combinations of tasks, encoders, and stores are supported. Please refer to
Chapter 7 [Storage concepts|, page 25 or Chapter 4 [Supported Properties|, page 13
for more information.
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9.3 File input/output errors [#03]

could not close purpose file filename

could not open purpose file filename
When LoLA encounters a problem opening files for reading or writing, a respec-
tive error message is shown. Usually, the message is accompanied with additional
information such as ‘last error message: No such file or directory’.

9.4 Thread error [#04]

thread could not be created

mutexes could not be created

mutex conditions could not be created

named semaphores could not be created

named semaphore could not be closed and/or unlinked
LoLA uses POSIX threads to realize multi-threaded execution. As the resources are
limited, errors may occur that are related to the pthread API.
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10 Integration guide

LoLA follows the UNIX principle of “everything is a file”. Thereby, integrating LoLLA into other
tools boils down to choosing the needed command line parameters, providing the input (net,
formula) as files, and reading the generated output(s). As LoLA allows to read from standard
input and write to standard output, it can further be integrated without generating files at all.

With the structured JSON output (see [JSON], page 31), it is furthermore very easy to ex-
tract special portions of the output, for instance using a JSON processor like jq (see http://
stedolan.github.io/jq/).

$ lola philsi0.lola --formula="EF DEADLOCK" --quiet --json | jq ".analysis.result,
.analysis.stats.states"

true

29

As another example, consider the following (very simplistic) Python script that passes a net
(given as string) to LoLA via standard input and reads the JSON output from standard output
into a dictionary.

e N
#!/usr/bin/env python

from subprocess import Popen, PIPE
import json

net = """
PLACE pl, p2;
MARKING pi1;
TRANSITION t
CONSUME p1;
PRODUCE p2;

lola = Popen(["lola", "--formula=\"EF DEADLOCK\", "--quiet", "--json"], stdin=PIPE, stdout=PIPE)
output = lola.communicate (input=net)

result = json.loads(output[0])

net_has_deadlock = result[’analysis’][’result’]
N J



http://stedolan.github.io/jq/
http://stedolan.github.io/jq/

Chapter 11: Utilities 39

11 Utilities

LoLA follows the UNIX principle of having one tool for one purpose. As such, several helper
functions have been moved from the main tool into smaller utility. These utilities are intended
to simplify scripting LoLA and to run it on remote locations.

The utilities are compiled together with LoLA and are located in the utils directory. Note the
utilities are not installed with ‘make install’.

11.1 Remote reporting (listener)

LoLA can send all reporting information to a remote destination via UDP. With the remote
reporting utility, 1istener, these reports can be received.

The listener tool runs until aborted with CTRL+c and prints all received reports to the standard
output. The input port is ‘56555’ by default and can be changed in the source code.

( N
Machine running listener

$ listener
lola: listening on port 5555
lola: 127.0.0.1 21:51:01: pid = 45541

lola: 127.0.0.1 21:51:01: reading net from philsi0.lola

lola: 127.0.0.1 21:51:01: finished parsing

lola: 127.0.0.1 21:51:01: closed net file phils10.lola

lola: 127.0.0.1 21:51:01: 90/65536 symbol table entries, O collisions

lola: 127.0.0.1 21:51:01: preprocessing net

lola: 127.0.0.1 21:51:01: computing forward-conflicting sets

lola: 127.0.0.1 21:51:01: computing back-conflicting sets

lola: 127.0.0.1 21:51:01: 60 transition conflict sets

lola: 127.0.0.1 21:51:01: finding significant places

lola: 127.0.0.1 21:51:01: 50 places, 40 transitions, 30 significant places
lola: 127.0.0.1 21:51:01: read: AG (EF (ea.l = 1))

lola: 127.0.0.1 21:51:01: formula length: 18

lola: 127.0.0.1 21:51:01: checking liveness

lola: 127.0.0.1 21:51:01: processing formula

lola: 127.0.0.1 21:51:01: processed formula: !(E(TRUE U !(E(TRUE U (ea.1 <= 1 AND ea.l1l > 0)))))
lola: 127.0.0.1 21:51:01: processed formula length: 50

lola: 127.0.0.1 21:51:01: 4 rewrites

lola: 127.0.0.1 21:51:01: formula mentions 1 of 50 places; total mentions: 2
lola: 127.0.0.1 21:51:01: using a bit-perfect encoder (--encoder)

lola: 127.0.0.1 21:51:01: using 120 bytes per marking, with O unused bits
lola: 127.0.0.1 21:51:01: using a prefix store (--store)

lola: 127.0.0.1 21:51:01: checking a formula (--check=modelchecking)

lola: 127.0.0.1 21:51:01: finished preprocessing

lola: 127.0.0.1 21:51:01: CTL formula contains 2 significant temporal operators and needs

9 bytes of payload
lola: 127.0.0.1 21:51:01: result: no

lola: 127.0.0.1 21:51:01: The net does not satisfy the given formula.

lola: 127.0.0.1 21:51:01: 3113 markings, 13384 edges

lola: 127.0.0.1 21:51:01: killed reporter thread

lola: 127.0.0.1 21:51:01: done

- J
( N
Machine running LoLA

$ lola phils10.lola --formula="AGEF ea.l = 1" --reporter=socket

- J

11.2 Remote termination (killer)

LoLA can be remotely terminated by sending special UDP packages to a running instance. With
the remote termination utility, killer, such packages can be sent.
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The killer tool sends a termination package to a predefined address (default: ‘localhost’)
and port (default: ‘6556’). The package further has a payload (default: ‘goodbye’) that needs
to match the running LoLA. All default values can be changed in the source code.

( N
Machine running LoLA

$ lola garavel.lola --formula="EF FIREABLE(t553)" --remoteTermination
lola: enabling remote termination (--remoteTermination)

lola: setting up listener socket at port 5556 - secret is goodbye
lola: reading net from garavel.lola

lola: finished parsing

lola: closed net file garavel.lola

lola: 1261/65536 symbol table entries, O collisions

lola: preprocessing net

lola: computing forward-conflicting sets

lola: computing back-conflicting sets

lola: 962 transition conflict sets

lola: finding significant places

lola: 485 places, 776 transitions, 419 significant places

lola: read: EF (FIREABLE(t553))

lola: formula length: 19

lola: checking reachability

lola: processing formula

lola: processed formula: (p.306 > O AND p.483 > 0)

lola: processed formula length: 25

lola: 8 rewrites

lola: processed formula with 2 atomic propositions

lola: formula mentions 2 of 485 places; total mentions: 2

lola: using a bit-perfect encoder (--encoder)

lola: using 1676 bytes per marking, with O unused bits

lola: using a prefix store (--store)

lola: checking a formula (--check=modelchecking)

lola: finished preprocessing

lola: 205181 markings, 235592 edges, 41036 markings/sec, 0 secs
lola: 403256 markings, 467135 edges, 39615 markings/sec, 5 secs
lola: received KILL packet (goodbye) from 127.0.0.1 - shutting down
lola: caught signal User defined signal 1: 30 - aborting LoLA

lola: killed listener thread
= J

( N
Machine running killer

$ lola: sending KILL packet (goodbye) to localhost:5556
= J
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12 Examples

In the following, we describe some examples from the example folder:

folder description

data reader/writer mutual exclusion

mutex simple mutex algorithm

vasy high-end multiprocessor architecture (Vasy example)

12.1 Reader/writer mutual exclusion (data)

12.1.1 Overview

The Reader/writer mutual exclusion example models a system with readers and writers. Read-
ing can be conducted concurrently whereas writing has to be done exclusively. This is modeled
by a number of semaphores (one for each reader) that need to be collected by a writer prior to
writing.

A graphical version is depicted in data.pdf. The model was originally modeled as high-level
Petri net (data.hllola), so versions with different numbers of readers and writers can be quickly
generated. The folder data contains a version of 10, 20, 50, 100 readers/writers, respectively.
Furthermore, the folder contains two formulae for each version: write-mutex-i.formula ex-
pressing that at most one writer can write at a time and rw-mutex-i.formula, expressing that
at if data is read, no data is written.

12.1.2 Write mutual exclusion

Let us first verify the mutual exclusion of writers:
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-

lola:
lola:
lola:
lola:
lola:
lola:
lola:
lola:
lola:
lola:
lola:
lola:

lola:
lola:
lola:
lola:

lola:
lola:
lola:
lola:
lola:
lola:
lola:
lola:
lola:
lola:
lola:
lola:
lola:
N

$ lola data-10x10.lola -f write-mutex-10.formula

reading net from data-10x10.lola

finished parsing

closed net file data-10x10.lola

90/65536 symbol table entries, O collisions
preprocessing net

computing forward-conflicting sets

computing back-conflicting sets

31 transition conflict sets

finding significant places

50 places, 40 transitions, 20 significant places
reading formula from write-mutex-10.formula
read: AG (wri.l + wri.2 + wri.3 + wri.4 + wri.5 + wri.6 + wri.7 + wri.8

+ wri.9 + wri.10 <= 1)

formula length: 88
checking invariance
processing formula
processed formula: wri.l + wri.2 + wri.3 + wri.4 + wri.5 + wri.6 + wri.7

+ wri.8 + wri.9 + wri.10 > 1

processed formula length: 82

65 rewrites

processed formula with 1 atomic propositions
formula mentions 10 of 50 places; total mentions: 10
closed formula file write-mutex-10.formula
using a bit-perfect encoder (--encoder)

using 4 bytes per marking, with 12 unused bits
using a prefix store (--store)

checking a formula (--check=modelchecking)
finished preprocessing

result: yes

The net satisfies the given formula.

21 markings, 40 edges

As this is the first example, we shall explain line by line:

lola:
lola:
lola:
lola:

lola:
lola:
lola:
lola:
lola:
lola:

lola:
lola:
+ wri.
lola:

reading net from data-10x10.1lola

finished parsing

closed net file data-10x10.1lola

90/65536 symbol table entries, O collisions
These lines describe the parsing process: LoLA read the file data-10x10.1lola and
stored it in its symbol table.

preprocessing net

computing forward-conflicting sets

computing back-conflicting sets

31 transition conflict sets

finding significant places

50 places, 40 transitions, 20 significant places
The preprocessing begins: To efficiently fire transitions, LoLA computes so-called
conflicting sets — this may take a while for large nets. Next, the place invariant are
used to find the significant places (see [Compression by place invariants|, page 26).
This example has 50 places, but only 20 significant places. Consequently, only the
markings of these 20 places are stored yielding a 40 percent reduction.

reading formula from write-mutex-10.formula
read: AG (wri.l +wri.2 +wri.3 +wri.4 +wri.5+wri.6 +wri.7 + wri.8
9+wri.10<=1)
formula length: 88
Next, the formula is read from file write-mutex-10.formula. This formula ex-
presses the mutual exclusion: the sum of the markings on the places expressing
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lola:
lola:
lola:
+ wri.
lola:

lola:
lola:
lola:
lola:

lola:
lola:
lola:
lola:
lola:

lola:
lola:

lola:

reading processes (‘wri.1’ — ‘wri.10’) must be at most one in all reachable mark-
ings (‘AG).

checking invariance

processing formula

processed formula: wri.1l +wri.2 +wri.3 +wri. 4+ wri.5 +wri.6 +wri.7

8+wri.9 +wri.10>1

processed formula length: 82
LoLA detects that only one temporal operator (‘AG’) occurs, making this an invari-
ance property. As formulas of type ‘AG phi’ can be transformed into ‘NOT EF NOT
phi’, LoLA will check the reachability of a state in which more than one of the
places ‘wri.1’ — ‘wri.10’ is marked. The result of this check will then be negated.

65 rewrites

processed formula with 1 atomic propositions

formula mentions 10 of 50 places; total mentions: 10

closed formula file write-mutex-10.formula
These are statistical outputs: to detect the formula type and to transform it into
a simpler form, it was rewritten in 65 steps. The formula contains one atomic
proposition (the sum of the places must be greater 1) and mentions 10 of 50 places.
The latter is a metric how “local” the formula is in the sense that LoLA’s reductions
are most efficient if only few places are mentioned in the formula.

using a bit-perfect encoder (--encoder)

using 4 bytes per marking, with 12 unused bits

using a prefix store (--store)

checking a formula (--check=modelchecking)

finished preprocessing
After processing the formula, information about the encoder and store are printed
(see Chapter 7 [Storage concepts|, page 25 for more information). As we neither
specified an encoder nor a store, the default values are used. A bit-perfect encoder
expresses each marking with 4 bytes which are stored by a prefix store. This con-
cludes the preprocessing and begins the checking of a formula (see [Temporal logic|,
page 13).

result: yes

The net satisfies the given formula.
LoLA could verify the formula: all reachable markings satisfy the mutual exclusion
of the writers. Note LoLLA originally checked ‘NOT EF NOT phi’ and returned ‘yes’,
because it could not find a reachable marking that violated ‘NOT phi’. That is,
LoLA’s final output always answers whether the original input formula holds and
LoLA takes care about any necessary negations or simplifications.

21 markings, 40 edges
Finally, LoLA reports the number of markings it generated (21) and how many
transitions were fired (40).

Also the larger versions satisfy this mutex:
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( N
$ lola data-10x10.lola -f write-mutex-10.formula

lola: result: yes
lola: The net satisfies the given formula.
lola: 41 markings, 80 edges

$ lola data-20x20.lola -f write-mutex-20.formula

lola: result: yes
lola: The net satisfies the given formula.
lola: 41 markings, 80 edges

$ lola data-50x50.lola -f write-mutex-50.formula

lola: result: yes
lola: The net satisfies the given formula.
lola: 101 markings, 200 edges

$ lola data-100x100.lola -f write-mutex-100.formula

lola: result: yes

lola: The net satisfies the given formula.

lola: 201 markings, 400 edges

- J

12.1.3 The complete state space as benchmark

The previous example showed we could prove mutual exclusion of the writer processes by check-
ing no more than 201 markings. To get a feeling for the size of the complete state space, let us
build it without reduction:

( N
$ lola data-20x20.lola --check=full

lola: 1048238 markings, 6239951 edges, 209648 markings/sec, 0 secs
lola: 1048500 markings, 12677119 edges, 52 markings/sec, 5 secs
lola: 1048576 markings, 19175337 edges, 15 markings/sec, 10 secs

lola: result: no
lola: 1048596 markings, 20971560 edges
- J

As we can see, the number of reachable markings explodes. However, we were able to prove mu-
tual exclusion by only visiting a small fraction of these states. Note the result of ‘~-check=full’
is always ‘no’.

12.1.4 Read/write mutual exclusion

The files ru-mutex-i.formula contain formulae expressing that if one process reads data, no
other process may write data. This mutual exclusion is formalized as ‘AG ((rea.l + rea.2 +

.>0) > (wri.1l +wri.2 + ... =0))’. Again, formal sums of places allow to naturally and
compactly express properties.

We now verify these formulae with the symmetry reduction enabled:
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-
$ lola data-10x10.lola -f rw-mutex-10.formula --symmetry

lola: computing symmetries (--symmetry)

lola: computed 90 generators (21 in search tree, 69 by composition)
lola: representing 1.31682E+13 symmetries

lola: O dead branches visited in search tree

lola: result: yes
lola: The net satisfies the given formula.
lola: 3 markings, 22 edges

$ lola data-100x100.lola -f rw-mutex-100.formula --symmetry

lola: computing symmetries (--symmetry)

lola: computed 9900 generators (202 in search tree, 9698 by composition)
lola: representing 8.70978E+315 symmetries

lola: O dead branches visited in search tree

lola: result: yes

lola: The net satisfies the given formula.
lola: 3 markings, 202 edges

-

As we can see, the net and our property are highly symmetry, and LoLA calculates up to
8.70978-10%!5 symmetries. The total number of states required to prove that the mutual exclusion
holds is fixed to 3 and does not grow with additional processes.

12.2 Simple mutex algorithm (mutex)

12.2.1 Overview

This example net models a simple mutex algorithm in which the mutual exclusion between two
agents with respect to a critical resource is implemented by a semaphore ‘key’.

A graphical version is depicted in mutex.pdf. The file mutex.hllola is a high-level version in
which the number of agents can be set arbitrarily. The low-level net mutex.lola is a version
with two agents.

Note the net’s transitions are annotated with fairness assumptions: Transitions ‘g2.0’ and ‘g2.1’
modeling the entry of the critical sections need to be treated strong fairly; that is, if an agent
infinitely often requests the entry, it must be granted infinitely often. Transitions ‘g3.0” and
‘g3.1" modeling the exit of the critical sections need to be treated weak fairly; that is, agents
must not stay in the critical section forever.

12.2.2 Mutual exclusion (safety property)

The file mutex_safety.formula models the mutual exclusion as safety property. It states
‘IMPOSSIBLE (critical.0 = 1 AND critical.l = 2)’ which is equivalent to the CTL formula
‘AG NOT (critical.0 =1 AND critical.1 = 2)’, which in turn is equivalent to the question
whether a marking satisfying ‘(critical.0 = 1 AND critical.1 = 2)’ is reachable.

-~
$ lola mutex.lola -f mutex_safety.formula

lola: reading formula from mutex_safety.formula

lola: read: AG (!((critical.O = 1 AND critical.1l = 1)))

lola: formula length: 43

lola: checking invariance

lola: processing formula

lola: processed formula: (critical.O0 <= 1 AND critical.O > O AND
critical.1 <= 2 AND critical.l > 0)

lola: The net satisfies the given formula.
lola: 7 markings, 13 edges
-
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Again, LoLA communicates how the input formula was read and rewritten. Note that LoLA
checks ‘critical.0 =1’ by ‘(critical.0 <=1 AND critical.0 > 0)’.

12.2.3 Mutual exclusion (liveness property)
File mutex_liveness.formula contains a liveness property ‘GF (critical.0 = 0 AND
critical.1 = 0)’ expressing that neither agent stays in the critical section forever:

( N
$ lola mutex.lola -f mutex_liveness.formula

lola: reading formula from mutex_liveness.formula

lola: read: G (F ((critical.0 = O AND critical.l = 0)))

lola: formula length: 43

lola: checking fairness

lola: fairness not yet implemented, converting to LTL...

lola: processing formula

lola: processed formula: G (F ((critical.0 <= 0 AND (critical.O > -1 AND
(critical.l <= 0 AND critical.1 > -1)))))

lola: processed formula length: 89

lola: 5 rewrites

lola: transforming LTL-Formula into a BZhi-Automaton

lola: the resulting Bchi automaton has 2 states

lola: result: yes

lola: The net satisfies the given formula.
lola: 8 markings, 42 edges

- J

LoLA recognizes the formula as fairness, but the dedicated fairness check from LoLA 1.x has
not yet been implemented in LoLA 2. Therefore, the property is checked with standard LTL
routines. As such, a Biichi automaton is generated from the formula.

Note this formula holds, because we ruled out behavior in which the critical section is never left
with fairness assumptions. Consider file mutex_unfair.lola without these fairness assumptions:

$ lola mutex_unfair.lola -f mutex_liveness.formula

lola: result: no
lola: The net does not satisfy the given formula.
lola: 5 markings, 14 edges

We can display a counterexample that demonstrates why the liveness property is violated:

( R
$ lola mutex_unfair.lola -f mutex_liveness.formula --path

lola: writing witness path to stdout
gl.1

g2.1

g0.0

===begin of cycle===

g0.0

===end of cycle===

lola: closed witness path file stdout

!.. )

LoLA displays a sequence of transitions, that model a scenario in which one agent stays in the
critical section forever: with ‘gl.1 g2.1’, agent 1 enters the critical section. Then, ‘g0.0’ is
fired indefinitely, meaning agent 0 never leaves its idle state.

Note that cyclic counterexamples are usual in case of LTL formulae.
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Finally, we can verify a leads-to property: ‘AGEF ((request.0 = 1) -> (EF critical.0 = 1))"
whenever an agent requests to enter the critical section, it will eventually enter it.

$ lola mutex.lola -f mutex_leadsto.formula

lola: result: yes
lola: The net satisfies the given formula.
lola: 8 markings, 35 edges

12.3 High-end multiprocessor architecture (vasy)

12.3.1 Overview

The model originates from an industrial case study, namely a model (8,500 lines of LOTOS and
3,000 lines of C) developed by Bull for it FAME high-end multiprocessor architecture. The source
code of this model (in LOTOS and C) was automatically translated into an interpreted Petri
net using the CAESAR compiler of the CADP toolbox. The present benchmark was obtained by
removing all data information (namely, data types, variables, conditions, actions, offers) from
the interpreted Petri net in order to obtain a place/transition Petri net.

The model was used in the 2013 edition of the Model Checking Contest, and file vasy.pdf lists
further information about the model.

12.3.2 Quasi-liveness

In the original specification, quasi-liveness was of interest. As LoLLA does not directly support
this property, we have to check, for each transition, whether a marking is reachable that enables
that transition. This can be done with the CTL formula ‘EF FIREABLE(t):

$ lola vasy.lola -f "EF FIREABLE(t1)"

lola: read: EF (FIREABLE(t1))
lola: formula length: 17

lola: checking reachability

lola: processing formula

lola: processed formula: p.476 > O

lola: result: yes
lola: The net satisfies the given formula.
lola: 4 markings, 3 edges

!.. )

The ‘FIREABLE’ predicate is unfolded to a property that is true iff the transition is enabled.
With a shell script, we can quickly check this property for each individual transition:

#!/bin/bash

for i in $(seq 1 775)
do

lola vasy.lola -f "EF FIREABLE(t$i)"
done

This script exploits the fact that the net’s transitions are named ‘t1’ to ‘t775’.

In all but four cases, LoLA gives an answer within seconds. However, for the remaining tran-
sitions (‘t516’, ‘t517’, ‘t552’, and ‘t553’), LoLA takes a lot of time and may even run out of
memory.
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However, we can use a Bloom filter (see [Bloom filter|, page 27) which stores a hash value of a few
bits rather than the complete marking with several bytes. However, a Bloom filter may produce
false positives; that is, LoLA may prematurely abort the state space exploration, because it
erroneously assumes a marking has already been generated. Hence, if LoLA does not find a
satisfying marking, we cannot be sure whether the property is indeed unsatisfiable.

( A
$ lola vasy.lola -f "EF FIREABLE(t516)" --store=bloom

lola: using Bloom filter with 2147483648 bit (2048 MB)

lola: using Bloom filter with 2 hash functions (--hashfunctions)

lola: checking a formula (--check=modelchecking)

lola: finished preprocessing

lola: 404989 markings, 473106 edges, 80998 markings/sec, 0 secs
lola: 2147483648 hash table size false positive probability: 0.0000001422
lola: 839627 markings, 979644 edges, 86928 markings/sec, 5 secs
lola: 2147483648 hash table size false positive probability: 0.0000006110
lola: 1322988 markings, 1540832 edges, 96672 markings/sec, 10 secs
lola: 2147483648 hash table size false positive probability: 0.0000015163
lola: 1782432 markings, 2075495 edges, 91889 markings/sec, 15 secs
lola: 2147483648 hash table size false positive probability: 0.0000027511
lola: 2254965 markings, 2626085 edges, 94507 markings/sec, 20 secs
lola: 2147483648 hash table size false positive probability: 0.0000044012
lola: Bloom filter: probability of false positive is 0.0000058831

lola: Bloom filter: optimal number of hash functions is 9.7

lola: result: yes

lola: The net satisfies the given formula.

lola: 2607528 markings, 3039534 edges

- J

With two hash functions, LoLLA uses 2 bits per marking and was able to prove the quasi-liveness
of transition ‘t516’ after generating 2607528 markings.
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13 From LoLA 1 to LoLA 2

This chapter summarizes the differences since earlier versions of LoLA (1.x).

13.1 General workflow

In LoLA 1, you needed to specify the kind of property you wanted to verify (e.g. ‘REACHABILITY’
and the reduction techniques to be applied in a userconfig.H file and then compile LoLA. If
you used LoLA for checking several properties, this led to a huge pile of executables and some
confusion about the configuration they represented. In LoLA 2, you just have a single executable,
and all features are controlled through the command line.

13.2 Net input

LoLA 2 does not support high level nets. As LoLA 1 is able to output a low level net when
started on a high level net, a work-around is available, though. Future releases of LoLA 2 will
provide support for high-level nets, but will use another language (closer to the C programming
language).

13.3 Property specification

In LoLA 1, you had a long list of supported properties. In LoLA 2, you express all properties in
the temporal logic CTL*. LoLA 2 rewrites your formula and checks whether it can use a special-
ized check, or whether to run a general CTL or LTL model checking algorithm. The rewriting
process also eliminates subformulas that it can prove to be tautologies or contradictions.

13.4 Supported properties

Unlike LoLA 1, LoLA 2 has a complete LTL model checker. In the current release, however,
partial order reduction is not available for general LTL and CTL model checking. There is no
specific support for AGEF properties that was provided in LoLA 1. Home states are no longer
supported. See [Property compatibility], page 11 for a complete comparison of the supported
properties.

13.5 Atomic propositions

In LoLA 1, atomic propositions compared places (i.e. the number of tokens on them) to constant
values, such as ‘p7 > 3’. In LoLA 2, you can compare arbitrary formal sums of places, such
as ‘3* p3+p4<=6x*pb+7. In addition, atomic propositions ‘DEADLOCK’, ‘INITIAL’, and
‘FIREABLE(t)’, where t is the name of a transition, have been added. This way, formulas like
‘AG (DEADLOCK OR p3 > 0)’ or ‘AG EF INITIAL’ can be specified. For expression of boundedness,
atomic propositions such as as ‘p4 < oo’ can be used. The symbol ‘00’ represents the value w of
coverability graph theory. See [Formula syntax|, page 10 for a complete overview of the syntax.

13.6 Reduction Techniques

In LoLA 2, the symmetry method is available for arbitrary properties, even for properties given
as a formula. This was not supported in LoLA 1. On the other hand, most options concerning
the way symmetries are used are no longer available.

13.7 Computed information

Output of a complete reachability graph is no longer supported. For most other bits of infor-
mation, LoLA 2 offers a structured output using the JSON format, see [JSON], page 31.
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13.8 Progress messages

These messages have been reshaped. They are now emitted at given points in time (rather than
given stages of computation). Messages can be suppressed, or deferred to a remote machine via
socket communication, see [Remote reporting], page 39.

13.9 Multicore Support

Selected tasks in LoLLA 2 can be spread over several cores.

13.10 Internal Architecture

Benefitting from our experience with LoLA 1, LoLA 2 has a more convincing internal structure.
This way, it is easier to extend and maintain LoLA 2. Furthermore, the interplay between
properties, stores, search engines, etc. is aligned with the modular structure and therefore less
error-prone.

13.11 Code Quality

LoLA 2 is a complete re-implementation. Not a single line of code was copied from LoLLA 1. For
coding LoLA 2, we used a system that reveals test case coverage. In core modules, coverage is
at or near one hundred percent. Most parts underwent code reviews. We have carefully hunted
for memory leaks.

13.12 Did you know?

You can abort LoLLA’s execution any time with CTRL+c. In case LoLLA is currently calculat-
ing symmetries, only that step is aborted and LoLA continues with incomplete symmetry
information.

Command line parameters can be abbreviated as long as the prefix is unambiguous. For
instance, instead of ‘--formula’, you can also write ‘-=form’ or even ‘--f’. The same holds
for option names, so ‘-—check=full’ can be abbreviated by ‘--check=f’ or ‘-cf’.

For any command line option that expects a file name to write to, you can pass ‘=’ to write
to standard output.

If no input file is given, LoLA reads from the standard input.

When building the state space, LoLA outputs statistics about markings per seconds. When
this number suddenly increases, this usually is a sign that the exploration nearly finished.
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