cbd_simulate.alc 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468
  1. include "primitives.alh"
  2. include "modelling.alh"
  3. include "object_operations.alh"
  4. include "conformance_scd.alh"
  5. include "io.alh"
  6. include "metamodels.alh"
  7. include "mini_modify.alh"
  8. Boolean function main(model : Element):
  9. String cmd
  10. Boolean running
  11. Element schedule_init
  12. Element schedule_run
  13. Element schedule
  14. Float current_time
  15. String time
  16. time = set_pop(allInstances(model, "FullRuntime/Time"))
  17. current_time = read_attribute(model, time, "current_time")
  18. schedule_init = create_schedule(model)
  19. schedule_run = read_root()
  20. Element nodes
  21. Element inputs
  22. String node
  23. nodes = allInstances(model, "FullRuntime/Block")
  24. inputs = dict_create()
  25. while (set_len(nodes) > 0):
  26. node = set_pop(nodes)
  27. dict_add(inputs, node, allAssociationOrigins(model, node, "FullRuntime/Link"))
  28. while (bool_not(has_input())):
  29. if (read_attribute(model, time, "start_time") == read_attribute(model, time, "current_time")):
  30. schedule = schedule_init
  31. else:
  32. if (element_eq(schedule_run, read_root())):
  33. schedule_run = create_schedule(model)
  34. schedule = schedule_run
  35. current_time = step_simulation(model, schedule, current_time, inputs)
  36. instantiate_attribute(model, time, "current_time", current_time)
  37. output("CLOSE")
  38. return True!
  39. Element function create_schedule(model : Element):
  40. // Create nice graph first
  41. Element nodes
  42. Element successors
  43. Element predecessors
  44. String element_name
  45. Element incoming_links
  46. Element all_blocks
  47. nodes = allInstances(model, "FullRuntime/Block")
  48. successors = dict_create()
  49. predecessors = dict_create()
  50. while (set_len(nodes) > 0):
  51. element_name = set_pop(nodes)
  52. if (bool_not(dict_in(successors, element_name))):
  53. dict_add(successors, element_name, create_node())
  54. if (bool_not(dict_in(predecessors, element_name))):
  55. dict_add(predecessors, element_name, create_node())
  56. if (is_nominal_instance(model, element_name, "FullRuntime/ICBlock")):
  57. if (bool_not(is_physical_float(read_attribute(model, element_name, "last_in")))):
  58. incoming_links = allIncomingAssociationInstances(model, element_name, "FullRuntime/InitialCondition")
  59. else:
  60. incoming_links = create_node()
  61. if (is_nominal_instance(model, element_name, "FullRuntime/DerivatorBlock")):
  62. Element new_incoming_links
  63. new_incoming_links = allIncomingAssociationInstances(model, element_name, "FullRuntime/Link")
  64. while (read_nr_out(new_incoming_links) > 0):
  65. list_append(incoming_links, set_pop(new_incoming_links))
  66. else:
  67. incoming_links = allIncomingAssociationInstances(model, element_name, "FullRuntime/Link")
  68. while (set_len(incoming_links) > 0):
  69. String source
  70. source = readAssociationSource(model, set_pop(incoming_links))
  71. if (bool_not(dict_in(successors, source))):
  72. dict_add(successors, source, create_node())
  73. set_add(successors[source], element_name)
  74. set_add(predecessors[element_name], source)
  75. Element values
  76. values = create_node()
  77. dict_add(values, "model", model)
  78. dict_add(values, "S", create_node())
  79. dict_add(values, "index", 0)
  80. dict_add(values, "indices", create_node())
  81. dict_add(values, "lowlink", create_node())
  82. dict_add(values, "onStack", create_node())
  83. dict_add(values, "successors", successors)
  84. dict_add(values, "predecessors", predecessors)
  85. dict_add(values, "SCC", create_node())
  86. nodes = get_topolist(values)
  87. while (list_len(nodes) > 0):
  88. strongconnect(list_pop_final(nodes), values)
  89. return values["SCC"]!
  90. Element function get_topolist(values : Element):
  91. Element result
  92. Element predecessors
  93. Element remaining
  94. String current_element
  95. Element cur_predecessors
  96. result = list_create()
  97. predecessors = dict_copy(values["predecessors"])
  98. while (dict_len(predecessors) > 0):
  99. remaining = dict_keys(predecessors)
  100. while (set_len(remaining) > 0):
  101. current_element = set_pop(remaining)
  102. cur_predecessors = predecessors[current_element]
  103. if (set_len(set_overlap(list_to_set(result), cur_predecessors)) == set_len(cur_predecessors)):
  104. // All predecessors of this node have already been visited
  105. dict_delete(predecessors, current_element)
  106. remaining = dict_keys(predecessors)
  107. list_append(result, current_element)
  108. return result!
  109. Integer function min(a : Integer, b : Integer):
  110. if (a < b):
  111. return a!
  112. else:
  113. return b!
  114. Void function strongconnect(v : String, values : Element):
  115. if (dict_in(values["indices"], v)):
  116. return!
  117. dict_overwrite(values["indices"], v, values["index"])
  118. dict_overwrite(values["lowlink"], v, values["index"])
  119. dict_overwrite(values, "index", cast_integer(values["index"]) + 1)
  120. list_append(values["S"], v)
  121. dict_overwrite(values["onStack"], v, True)
  122. Element successors
  123. String w
  124. successors = values["successors"][v]
  125. while (set_len(successors) > 0):
  126. w = set_pop(successors)
  127. if (bool_not(dict_in(values["indices"], w))):
  128. strongconnect(w, values)
  129. dict_overwrite(values["lowlink"], v, min(values["lowlink"][v], values["lowlink"][w]))
  130. elif (dict_in(values["onStack"], w)):
  131. if (values["onStack"][w]):
  132. dict_overwrite(values["lowlink"], v, min(values["lowlink"][v], values["indices"][w]))
  133. if (value_eq(values["lowlink"][v], values["indices"][v])):
  134. Element scc
  135. scc = create_node()
  136. // It will always differ now
  137. w = list_pop_final(values["S"])
  138. list_append(scc, w)
  139. dict_overwrite(values["onStack"], w, False)
  140. while (w != v):
  141. w = list_pop_final(values["S"])
  142. list_append(scc, w)
  143. dict_overwrite(values["onStack"], w, False)
  144. list_insert(values["SCC"], scc, 0)
  145. return!
  146. Boolean function solve_scc(model : Element, scc : Element):
  147. Element m
  148. Integer i
  149. Integer j
  150. String block
  151. String blocktype
  152. Element incoming
  153. String selected
  154. Float constant
  155. Element t
  156. // Construct the matrix first, with as many rows as there are variables
  157. // Number of columns is 1 higher
  158. i = 0
  159. m = create_node()
  160. while (i < read_nr_out(scc)):
  161. j = 0
  162. t = create_node()
  163. while (j < (read_nr_out(scc) + 1)):
  164. list_append(t, 0.0)
  165. j = j + 1
  166. list_append(m, t)
  167. i = i + 1
  168. // Matrix initialized to 0.0
  169. i = 0
  170. while (i < read_nr_out(scc)):
  171. // First element of scc
  172. block = scc[i]
  173. blocktype = read_type(model, block)
  174. // First write 1 in the current block
  175. dict_overwrite(m[i], i, 1.0)
  176. // Now check all blocks that are incoming
  177. if (blocktype == "FullRuntime/AdditionBlock"):
  178. constant = 0.0
  179. elif (blocktype == "FullRuntime/MultiplyBlock"):
  180. constant = 1.0
  181. incoming = allIncomingAssociationInstances(model, block, "Link")
  182. Integer index_to_write_constant
  183. index_to_write_constant = -1
  184. while (read_nr_out(incoming) > 0):
  185. selected = readAssociationSource(model, set_pop(incoming))
  186. if (set_in(scc, selected)):
  187. // Part of the loop, so in the index of selected in scc
  188. // Five options:
  189. if (blocktype == "FullRuntime/AdditionBlock"):
  190. // 1) AdditionBlock
  191. // Add the negative of this signal, which is as of yet unknown
  192. // x = y + z --> x - y - z = 0
  193. dict_overwrite(m[i], list_index_of(scc, selected), -1.0)
  194. elif (blocktype == "FullRuntime/MultiplyBlock"):
  195. // 2) MultiplyBlock
  196. if (index_to_write_constant != -1):
  197. return False!
  198. index_to_write_constant = list_index_of(scc, selected)
  199. elif (blocktype == "FullRuntime/NegatorBlock"):
  200. // 3) NegatorBlock
  201. // Add the positive of the signal, which is as of yet unknown
  202. dict_overwrite(m[i], list_index_of(scc, selected), 1.0)
  203. elif (blocktype == "FullRuntime/DelayBlock"):
  204. // 5) DelayBlock
  205. // Just copies a single value
  206. dict_overwrite(m[i], list_index_of(scc, selected), -1.0)
  207. else:
  208. // Block that cannot be handled
  209. return False!
  210. else:
  211. // A constant, which we can assume is already computed and thus usable
  212. if (blocktype == "FullRuntime/AdditionBlock"):
  213. constant = constant + cast_float(read_attribute(model, selected, "signal"))
  214. dict_overwrite(m[i], read_nr_out(scc), constant)
  215. elif (blocktype == "FullRuntime/MultiplyBlock"):
  216. constant = constant * cast_float(read_attribute(model, selected, "signal"))
  217. // Not written to constant part, as multiplies a variable
  218. // Any other block is impossible:
  219. // * Constant would never be part of a SCC
  220. // * Delay would never get an incoming constant
  221. // * Negation and Inverse only get 1 input, which is a variable in a loop
  222. // * Integrator and Derivator never get an incoming constant
  223. if (index_to_write_constant != -1):
  224. dict_overwrite(m[i], index_to_write_constant, -constant)
  225. i = i + 1
  226. // Constructed a complete matrix, so we can start!
  227. log(matrix2string(m))
  228. // Solve matrix now
  229. eliminateGaussJordan(m)
  230. // Now go over m and set signals for each element
  231. // Assume that everything worked out...
  232. i = 0
  233. while (i < read_nr_out(m)):
  234. block = scc[i]
  235. instantiate_attribute(model, block, "signal", m[i][read_nr_out(scc)])
  236. log((("Solved " + block) + " to ") + cast_string(m[i][read_nr_out(scc)]))
  237. i = i + 1
  238. return True!
  239. Integer function list_index_of(lst : Element, elem : Element):
  240. Integer i
  241. i = 0
  242. while (i < read_nr_out(lst)):
  243. if (value_eq(list_read(lst, i), elem)):
  244. return i!
  245. else:
  246. i = i + 1
  247. return -1!
  248. Float function step_simulation(model : Element, schedule : Element, time : Float, inputs : Element):
  249. Float signal
  250. Element incoming
  251. String selected
  252. String block
  253. String elem
  254. String blocktype
  255. Element memory_blocks
  256. Integer i
  257. Float delta_t
  258. Element scc
  259. delta_t = 0.1
  260. memory_blocks = set_create()
  261. i = 0
  262. while (i < list_len(schedule)):
  263. scc = list_read(schedule, i)
  264. i = i + 1
  265. if (list_len(scc) > 1):
  266. if (bool_not(solve_scc(model, scc))):
  267. output("ALGEBRAIC_LOOP")
  268. return time!
  269. else:
  270. block = list_read(scc, 0)
  271. // Execute "block"
  272. blocktype = read_type(model, block)
  273. incoming = set_copy(inputs[block])
  274. if (blocktype == "FullRuntime/ConstantBlock"):
  275. signal = read_attribute(model, block, "value")
  276. elif (blocktype == "FullRuntime/AdditionBlock"):
  277. signal = 0.0
  278. while (set_len(incoming) > 0):
  279. selected = set_pop(incoming)
  280. signal = signal + cast_float(read_attribute(model, selected, "signal"))
  281. elif (blocktype == "FullRuntime/MultiplyBlock"):
  282. signal = 1.0
  283. while (set_len(incoming) > 0):
  284. selected = set_pop(incoming)
  285. signal = signal * cast_float(read_attribute(model, selected, "signal"))
  286. elif (blocktype == "FullRuntime/NegatorBlock"):
  287. signal = 0.0
  288. while (set_len(incoming) > 0):
  289. selected = set_pop(incoming)
  290. signal = float_neg(cast_float(read_attribute(model, selected, "signal")))
  291. elif (blocktype == "FullRuntime/InverseBlock"):
  292. signal = 0.0
  293. while (set_len(incoming) > 0):
  294. selected = set_pop(incoming)
  295. signal = float_division(1.0, cast_float(read_attribute(model, selected, "signal")))
  296. elif (blocktype == "FullRuntime/DelayBlock"):
  297. signal = 0.0
  298. if (bool_not(is_physical_float(read_attribute(model, block, "last_in")))):
  299. // No memory yet, so use initial condition
  300. incoming = allAssociationOrigins(model, block, "FullRuntime/InitialCondition")
  301. while (set_len(incoming) > 0):
  302. selected = set_pop(incoming)
  303. signal = cast_float(read_attribute(model, selected, "signal"))
  304. else:
  305. signal = read_attribute(model, block, "last_in")
  306. set_add(memory_blocks, block)
  307. elif (blocktype == "FullRuntime/IntegratorBlock"):
  308. if (bool_not(is_physical_float(read_attribute(model, block, "last_in")))):
  309. // No history yet, so use initial values
  310. incoming = allAssociationOrigins(model, block, "FullRuntime/InitialCondition")
  311. while (set_len(incoming) > 0):
  312. selected = set_pop(incoming)
  313. signal = cast_float(read_attribute(model, selected, "signal"))
  314. else:
  315. signal = cast_float(read_attribute(model, block, "last_out")) + (delta_t * cast_float(read_attribute(model, block, "last_in")))
  316. instantiate_attribute(model, block, "last_out", signal)
  317. set_add(memory_blocks, block)
  318. elif (blocktype == "FullRuntime/DerivatorBlock"):
  319. if (bool_not(is_physical_float(read_attribute(model, block, "last_in")))):
  320. // No history yet, so use initial values
  321. incoming = allAssociationOrigins(model, block, "FullRuntime/InitialCondition")
  322. while (set_len(incoming) > 0):
  323. selected = set_pop(incoming)
  324. signal = cast_float(read_attribute(model, selected, "signal"))
  325. else:
  326. while (set_len(incoming) > 0):
  327. selected = set_pop(incoming)
  328. signal = (cast_float(read_attribute(model, selected, "signal")) - cast_float(read_attribute(model, block, "last_in"))) / delta_t
  329. set_add(memory_blocks, block)
  330. elif (blocktype == "FullRuntime/ProbeBlock"):
  331. while (set_len(incoming) > 0):
  332. signal = cast_float(read_attribute(model, set_pop(incoming), "signal"))
  333. output(cast_string(time) + " " + cast_string(read_attribute(model, block, "name")) + " " + cast_string(signal))
  334. instantiate_attribute(model, block, "signal", signal)
  335. while (set_len(memory_blocks) > 0):
  336. block = set_pop(memory_blocks)
  337. // Update memory
  338. incoming = set_copy(inputs[block])
  339. while (set_len(incoming) > 0):
  340. selected = set_pop(incoming)
  341. instantiate_attribute(model, block, "last_in", cast_float(read_attribute(model, selected, "signal")))
  342. // Increase simulation time
  343. return time + delta_t!
  344. Void function eliminateGaussJordan(m : Element):
  345. Integer i
  346. Integer j
  347. Integer f
  348. Integer g
  349. Boolean searching
  350. Element t
  351. Float divisor
  352. i = 0
  353. j = 0
  354. while (i < read_nr_out(m)):
  355. // Make sure pivot m[i][j] != 0, swapping if necessary
  356. while (cast_float(m[i][j]) == 0.0):
  357. // Is zero, so find row which is not zero
  358. f = i + 1
  359. searching = True
  360. while (searching):
  361. if (f >= read_nr_out(m)):
  362. // No longer any rows left, so just increase column counter
  363. searching = False
  364. j = j + 1
  365. else:
  366. if (cast_float(m[f][j]) == 0.0):
  367. // Also zero, so continue
  368. f = f + 1
  369. else:
  370. // Found non-zero, so swap row
  371. t = cast_float(m[f])
  372. dict_overwrite(m, f, cast_float(m[i]))
  373. dict_overwrite(m, i, t)
  374. searching = False
  375. // If we have increased j, we will just start the loop again (possibly), as m[i][j] might be zero again
  376. // Pivot in m[i][j] guaranteed to not be 0
  377. // Now divide complete row by value of m[i][j] to make it equal 1
  378. f = j
  379. divisor = cast_float(m[i][j])
  380. while (f < read_nr_out(m[i])):
  381. dict_overwrite(m[i], f, float_division(cast_float(m[i][f]), divisor))
  382. f = f + 1
  383. // Eliminate all rows in the j-th column, except the i-th row
  384. f = 0
  385. while (f < read_nr_out(m)):
  386. if (bool_not(f == i)):
  387. g = j
  388. divisor = cast_float(m[f][j])
  389. while (g < read_nr_out(m[f])):
  390. dict_overwrite(m[f], g, cast_float(m[f][g]) - (divisor * cast_float(m[i][g])))
  391. g = g + 1
  392. f = f + 1
  393. // Increase row and column
  394. i = i + 1
  395. j = j + 1
  396. return !
  397. String function matrix2string(m : Element):
  398. Integer i
  399. Integer j
  400. String result
  401. result = ""
  402. i = 0
  403. while (i < read_nr_out(m)):
  404. j = 0
  405. while (j < read_nr_out(m[i])):
  406. result = result + cast_string(m[i][j]) + ", "
  407. j = j + 1
  408. i = i + 1
  409. result = result + "\n"
  410. return result!