123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468 |
- include "primitives.alh"
- include "modelling.alh"
- include "object_operations.alh"
- include "conformance_scd.alh"
- include "io.alh"
- include "metamodels.alh"
- include "mini_modify.alh"
- Boolean function main(model : Element):
- String cmd
- Boolean running
- Element schedule_init
- Element schedule_run
- Element schedule
- Float current_time
- String time
- time = set_pop(allInstances(model, "FullRuntime/Time"))
- current_time = read_attribute(model, time, "current_time")
- schedule_init = create_schedule(model)
- schedule_run = read_root()
- Element nodes
- Element inputs
- String node
- nodes = allInstances(model, "FullRuntime/Block")
- inputs = dict_create()
- while (set_len(nodes) > 0):
- node = set_pop(nodes)
- dict_add(inputs, node, allAssociationOrigins(model, node, "FullRuntime/Link"))
- while (bool_not(has_input())):
- if (read_attribute(model, time, "start_time") == read_attribute(model, time, "current_time")):
- schedule = schedule_init
- else:
- if (element_eq(schedule_run, read_root())):
- schedule_run = create_schedule(model)
- schedule = schedule_run
- current_time = step_simulation(model, schedule, current_time, inputs)
- instantiate_attribute(model, time, "current_time", current_time)
- output("CLOSE")
- return True!
- Element function create_schedule(model : Element):
- // Create nice graph first
- Element nodes
- Element successors
- Element predecessors
- String element_name
- Element incoming_links
- Element all_blocks
- nodes = allInstances(model, "FullRuntime/Block")
- successors = dict_create()
- predecessors = dict_create()
- while (set_len(nodes) > 0):
- element_name = set_pop(nodes)
- if (bool_not(dict_in(successors, element_name))):
- dict_add(successors, element_name, create_node())
- if (bool_not(dict_in(predecessors, element_name))):
- dict_add(predecessors, element_name, create_node())
- if (is_nominal_instance(model, element_name, "FullRuntime/ICBlock")):
- if (bool_not(is_physical_float(read_attribute(model, element_name, "last_in")))):
- incoming_links = allIncomingAssociationInstances(model, element_name, "FullRuntime/InitialCondition")
- else:
- incoming_links = create_node()
- if (is_nominal_instance(model, element_name, "FullRuntime/DerivatorBlock")):
- Element new_incoming_links
- new_incoming_links = allIncomingAssociationInstances(model, element_name, "FullRuntime/Link")
- while (read_nr_out(new_incoming_links) > 0):
- list_append(incoming_links, set_pop(new_incoming_links))
- else:
- incoming_links = allIncomingAssociationInstances(model, element_name, "FullRuntime/Link")
- while (set_len(incoming_links) > 0):
- String source
- source = readAssociationSource(model, set_pop(incoming_links))
- if (bool_not(dict_in(successors, source))):
- dict_add(successors, source, create_node())
- set_add(successors[source], element_name)
- set_add(predecessors[element_name], source)
-
- Element values
- values = create_node()
- dict_add(values, "model", model)
- dict_add(values, "S", create_node())
- dict_add(values, "index", 0)
- dict_add(values, "indices", create_node())
- dict_add(values, "lowlink", create_node())
- dict_add(values, "onStack", create_node())
- dict_add(values, "successors", successors)
- dict_add(values, "predecessors", predecessors)
- dict_add(values, "SCC", create_node())
- nodes = get_topolist(values)
- while (list_len(nodes) > 0):
- strongconnect(list_pop_final(nodes), values)
- return values["SCC"]!
- Element function get_topolist(values : Element):
- Element result
- Element predecessors
- Element remaining
- String current_element
- Element cur_predecessors
- result = list_create()
- predecessors = dict_copy(values["predecessors"])
- while (dict_len(predecessors) > 0):
- remaining = dict_keys(predecessors)
- while (set_len(remaining) > 0):
- current_element = set_pop(remaining)
- cur_predecessors = predecessors[current_element]
- if (set_len(set_overlap(list_to_set(result), cur_predecessors)) == set_len(cur_predecessors)):
- // All predecessors of this node have already been visited
- dict_delete(predecessors, current_element)
- remaining = dict_keys(predecessors)
- list_append(result, current_element)
- return result!
- Integer function min(a : Integer, b : Integer):
- if (a < b):
- return a!
- else:
- return b!
- Void function strongconnect(v : String, values : Element):
- if (dict_in(values["indices"], v)):
- return!
- dict_overwrite(values["indices"], v, values["index"])
- dict_overwrite(values["lowlink"], v, values["index"])
- dict_overwrite(values, "index", cast_integer(values["index"]) + 1)
- list_append(values["S"], v)
- dict_overwrite(values["onStack"], v, True)
-
- Element successors
- String w
- successors = values["successors"][v]
- while (set_len(successors) > 0):
- w = set_pop(successors)
- if (bool_not(dict_in(values["indices"], w))):
- strongconnect(w, values)
- dict_overwrite(values["lowlink"], v, min(values["lowlink"][v], values["lowlink"][w]))
- elif (dict_in(values["onStack"], w)):
- if (values["onStack"][w]):
- dict_overwrite(values["lowlink"], v, min(values["lowlink"][v], values["indices"][w]))
-
- if (value_eq(values["lowlink"][v], values["indices"][v])):
- Element scc
- scc = create_node()
- // It will always differ now
- w = list_pop_final(values["S"])
- list_append(scc, w)
- dict_overwrite(values["onStack"], w, False)
- while (w != v):
- w = list_pop_final(values["S"])
- list_append(scc, w)
- dict_overwrite(values["onStack"], w, False)
- list_insert(values["SCC"], scc, 0)
- return!
- Boolean function solve_scc(model : Element, scc : Element):
- Element m
- Integer i
- Integer j
- String block
- String blocktype
- Element incoming
- String selected
- Float constant
- Element t
- // Construct the matrix first, with as many rows as there are variables
- // Number of columns is 1 higher
- i = 0
- m = create_node()
- while (i < read_nr_out(scc)):
- j = 0
- t = create_node()
- while (j < (read_nr_out(scc) + 1)):
- list_append(t, 0.0)
- j = j + 1
- list_append(m, t)
- i = i + 1
- // Matrix initialized to 0.0
- i = 0
- while (i < read_nr_out(scc)):
- // First element of scc
- block = scc[i]
- blocktype = read_type(model, block)
- // First write 1 in the current block
- dict_overwrite(m[i], i, 1.0)
- // Now check all blocks that are incoming
- if (blocktype == "FullRuntime/AdditionBlock"):
- constant = 0.0
- elif (blocktype == "FullRuntime/MultiplyBlock"):
- constant = 1.0
- incoming = allIncomingAssociationInstances(model, block, "Link")
- Integer index_to_write_constant
- index_to_write_constant = -1
- while (read_nr_out(incoming) > 0):
- selected = readAssociationSource(model, set_pop(incoming))
- if (set_in(scc, selected)):
- // Part of the loop, so in the index of selected in scc
- // Five options:
- if (blocktype == "FullRuntime/AdditionBlock"):
- // 1) AdditionBlock
- // Add the negative of this signal, which is as of yet unknown
- // x = y + z --> x - y - z = 0
- dict_overwrite(m[i], list_index_of(scc, selected), -1.0)
- elif (blocktype == "FullRuntime/MultiplyBlock"):
- // 2) MultiplyBlock
- if (index_to_write_constant != -1):
- return False!
- index_to_write_constant = list_index_of(scc, selected)
- elif (blocktype == "FullRuntime/NegatorBlock"):
- // 3) NegatorBlock
- // Add the positive of the signal, which is as of yet unknown
- dict_overwrite(m[i], list_index_of(scc, selected), 1.0)
- elif (blocktype == "FullRuntime/DelayBlock"):
- // 5) DelayBlock
- // Just copies a single value
- dict_overwrite(m[i], list_index_of(scc, selected), -1.0)
- else:
- // Block that cannot be handled
- return False!
- else:
- // A constant, which we can assume is already computed and thus usable
- if (blocktype == "FullRuntime/AdditionBlock"):
- constant = constant + cast_float(read_attribute(model, selected, "signal"))
- dict_overwrite(m[i], read_nr_out(scc), constant)
- elif (blocktype == "FullRuntime/MultiplyBlock"):
- constant = constant * cast_float(read_attribute(model, selected, "signal"))
- // Not written to constant part, as multiplies a variable
- // Any other block is impossible:
- // * Constant would never be part of a SCC
- // * Delay would never get an incoming constant
- // * Negation and Inverse only get 1 input, which is a variable in a loop
- // * Integrator and Derivator never get an incoming constant
- if (index_to_write_constant != -1):
- dict_overwrite(m[i], index_to_write_constant, -constant)
- i = i + 1
- // Constructed a complete matrix, so we can start!
- log(matrix2string(m))
- // Solve matrix now
- eliminateGaussJordan(m)
- // Now go over m and set signals for each element
- // Assume that everything worked out...
- i = 0
- while (i < read_nr_out(m)):
- block = scc[i]
- instantiate_attribute(model, block, "signal", m[i][read_nr_out(scc)])
- log((("Solved " + block) + " to ") + cast_string(m[i][read_nr_out(scc)]))
- i = i + 1
- return True!
- Integer function list_index_of(lst : Element, elem : Element):
- Integer i
- i = 0
- while (i < read_nr_out(lst)):
- if (value_eq(list_read(lst, i), elem)):
- return i!
- else:
- i = i + 1
- return -1!
- Float function step_simulation(model : Element, schedule : Element, time : Float, inputs : Element):
- Float signal
- Element incoming
- String selected
- String block
- String elem
- String blocktype
- Element memory_blocks
- Integer i
- Float delta_t
- Element scc
- delta_t = 0.1
- memory_blocks = set_create()
- i = 0
- while (i < list_len(schedule)):
- scc = list_read(schedule, i)
- i = i + 1
- if (list_len(scc) > 1):
- if (bool_not(solve_scc(model, scc))):
- output("ALGEBRAIC_LOOP")
- return time!
- else:
- block = list_read(scc, 0)
- // Execute "block"
- blocktype = read_type(model, block)
- incoming = set_copy(inputs[block])
- if (blocktype == "FullRuntime/ConstantBlock"):
- signal = read_attribute(model, block, "value")
- elif (blocktype == "FullRuntime/AdditionBlock"):
- signal = 0.0
- while (set_len(incoming) > 0):
- selected = set_pop(incoming)
- signal = signal + cast_float(read_attribute(model, selected, "signal"))
- elif (blocktype == "FullRuntime/MultiplyBlock"):
- signal = 1.0
- while (set_len(incoming) > 0):
- selected = set_pop(incoming)
- signal = signal * cast_float(read_attribute(model, selected, "signal"))
- elif (blocktype == "FullRuntime/NegatorBlock"):
- signal = 0.0
- while (set_len(incoming) > 0):
- selected = set_pop(incoming)
- signal = float_neg(cast_float(read_attribute(model, selected, "signal")))
- elif (blocktype == "FullRuntime/InverseBlock"):
- signal = 0.0
- while (set_len(incoming) > 0):
- selected = set_pop(incoming)
- signal = float_division(1.0, cast_float(read_attribute(model, selected, "signal")))
- elif (blocktype == "FullRuntime/DelayBlock"):
- signal = 0.0
- if (bool_not(is_physical_float(read_attribute(model, block, "last_in")))):
- // No memory yet, so use initial condition
- incoming = allAssociationOrigins(model, block, "FullRuntime/InitialCondition")
- while (set_len(incoming) > 0):
- selected = set_pop(incoming)
- signal = cast_float(read_attribute(model, selected, "signal"))
- else:
- signal = read_attribute(model, block, "last_in")
- set_add(memory_blocks, block)
- elif (blocktype == "FullRuntime/IntegratorBlock"):
- if (bool_not(is_physical_float(read_attribute(model, block, "last_in")))):
- // No history yet, so use initial values
- incoming = allAssociationOrigins(model, block, "FullRuntime/InitialCondition")
- while (set_len(incoming) > 0):
- selected = set_pop(incoming)
- signal = cast_float(read_attribute(model, selected, "signal"))
- else:
- signal = cast_float(read_attribute(model, block, "last_out")) + (delta_t * cast_float(read_attribute(model, block, "last_in")))
- instantiate_attribute(model, block, "last_out", signal)
- set_add(memory_blocks, block)
- elif (blocktype == "FullRuntime/DerivatorBlock"):
- if (bool_not(is_physical_float(read_attribute(model, block, "last_in")))):
- // No history yet, so use initial values
- incoming = allAssociationOrigins(model, block, "FullRuntime/InitialCondition")
- while (set_len(incoming) > 0):
- selected = set_pop(incoming)
- signal = cast_float(read_attribute(model, selected, "signal"))
- else:
- while (set_len(incoming) > 0):
- selected = set_pop(incoming)
- signal = (cast_float(read_attribute(model, selected, "signal")) - cast_float(read_attribute(model, block, "last_in"))) / delta_t
- set_add(memory_blocks, block)
- elif (blocktype == "FullRuntime/ProbeBlock"):
- while (set_len(incoming) > 0):
- signal = cast_float(read_attribute(model, set_pop(incoming), "signal"))
- output(cast_string(time) + " " + cast_string(read_attribute(model, block, "name")) + " " + cast_string(signal))
- instantiate_attribute(model, block, "signal", signal)
-
- while (set_len(memory_blocks) > 0):
- block = set_pop(memory_blocks)
- // Update memory
- incoming = set_copy(inputs[block])
- while (set_len(incoming) > 0):
- selected = set_pop(incoming)
- instantiate_attribute(model, block, "last_in", cast_float(read_attribute(model, selected, "signal")))
- // Increase simulation time
- return time + delta_t!
- Void function eliminateGaussJordan(m : Element):
- Integer i
- Integer j
- Integer f
- Integer g
- Boolean searching
- Element t
- Float divisor
- i = 0
- j = 0
- while (i < read_nr_out(m)):
- // Make sure pivot m[i][j] != 0, swapping if necessary
- while (cast_float(m[i][j]) == 0.0):
- // Is zero, so find row which is not zero
- f = i + 1
- searching = True
- while (searching):
- if (f >= read_nr_out(m)):
- // No longer any rows left, so just increase column counter
- searching = False
- j = j + 1
- else:
- if (cast_float(m[f][j]) == 0.0):
- // Also zero, so continue
- f = f + 1
- else:
- // Found non-zero, so swap row
- t = cast_float(m[f])
- dict_overwrite(m, f, cast_float(m[i]))
- dict_overwrite(m, i, t)
- searching = False
- // If we have increased j, we will just start the loop again (possibly), as m[i][j] might be zero again
- // Pivot in m[i][j] guaranteed to not be 0
- // Now divide complete row by value of m[i][j] to make it equal 1
- f = j
- divisor = cast_float(m[i][j])
- while (f < read_nr_out(m[i])):
- dict_overwrite(m[i], f, float_division(cast_float(m[i][f]), divisor))
- f = f + 1
- // Eliminate all rows in the j-th column, except the i-th row
- f = 0
- while (f < read_nr_out(m)):
- if (bool_not(f == i)):
- g = j
- divisor = cast_float(m[f][j])
- while (g < read_nr_out(m[f])):
- dict_overwrite(m[f], g, cast_float(m[f][g]) - (divisor * cast_float(m[i][g])))
- g = g + 1
- f = f + 1
- // Increase row and column
- i = i + 1
- j = j + 1
- return !
- String function matrix2string(m : Element):
- Integer i
- Integer j
- String result
- result = ""
- i = 0
- while (i < read_nr_out(m)):
- j = 0
- while (j < read_nr_out(m[i])):
- result = result + cast_string(m[i][j]) + ", "
- j = j + 1
- i = i + 1
- result = result + "\n"
- return result!
|