main.py 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413
  1. import sys
  2. from collections import defaultdict
  3. import os
  4. import gzip
  5. import time
  6. # Work around Python 2 where a 'big integer' automatically becomes a long
  7. if sys.version > '3': # pragma: no cover
  8. import pickle as pickle
  9. integer_types = (int,)
  10. primitive_types = (int, float, str, bool)
  11. else: # pragma: no cover
  12. import cPickle as pickle
  13. integer_types = (int, long)
  14. primitive_types = (int, long, float, str, bool, unicode)
  15. complex_primitives = frozenset(["if", "while", "assign", "call", "break", "continue", "return","resolve","access", "constant", "input", "output", "declare", "global", "none"])
  16. def instance_to_string(value):
  17. return value["value"]
  18. def string_to_instance(value):
  19. return {'value': value}
  20. class ModelverseState(object):
  21. def __init__(self, bootfile = None):
  22. self.free_id = 0
  23. self.edges = {}
  24. self.outgoing = {}
  25. self.incoming = {}
  26. self.values = {}
  27. self.nodes = set()
  28. self.GC = True
  29. self.to_delete = set()
  30. self.cache = {}
  31. self.cache_node = {}
  32. if bootfile is not None:
  33. self.root = self.parse(bootfile)
  34. else:
  35. self.root = self.create_node()
  36. def dump_modelverse(self):
  37. with open("/tmp/modelverse.out", "w") as f:
  38. f.write("digraph main {\n")
  39. for n in self.nodes:
  40. if n in self.values:
  41. f.write("a_%s [label=\"a_%s (%s)\"];\n" % (n, n, self.values[n]))
  42. else:
  43. f.write("a_%s [label=\"a_%s\"];\n" % (n, n))
  44. for i, e in self.edges.iteritems():
  45. f.write("%s -> %s [label=\"%s\"];\n" % (e[0], e[1], i))
  46. f.write("}")
  47. return self.root
  48. def parse(self, filename):
  49. picklefile = filename + ".pickle"
  50. try:
  51. if os.path.getmtime(picklefile) > os.path.getmtime(filename):
  52. # Pickle is more recent than bootstrap file, so we can use it
  53. self.root, self.free_id, self.nodes, self.edges, self.values, self.cache, self.cache_node = pickle.load(open(picklefile, 'rb'))
  54. for name in self.edges:
  55. source, destination = self.edges[name]
  56. self.outgoing.setdefault(source, set()).add(name)
  57. self.incoming.setdefault(destination, set()).add(name)
  58. return self.root
  59. else:
  60. raise Exception("Invalid pickle")
  61. except Exception as e:
  62. # We have to parse the file and create the pickle
  63. symbols = {}
  64. def resolve(symb):
  65. try:
  66. return int(symb)
  67. except:
  68. if symb[0] == "?":
  69. derefs = symb[1:].split("/")
  70. v = self.read_dict(symbols["root"], "__hierarchy")
  71. for deref in derefs:
  72. v = self.read_dict(v, deref)
  73. return v
  74. else:
  75. return symbols[symb]
  76. with gzip.open(filename, 'rb') as f:
  77. for line in f:
  78. element_type, constructor = line.split(None, 1)
  79. name, values = constructor.split("(", 1)
  80. values, _ = values.rsplit(")", 1)
  81. if element_type == "Node":
  82. name = name.split()[0]
  83. if values == "":
  84. symbols[name] = self.create_node()
  85. else:
  86. value = values
  87. if value in complex_primitives:
  88. value = string_to_instance(value)
  89. else:
  90. value = eval(value)
  91. symbols[name] = self.create_nodevalue(value)
  92. elif element_type == "Edge":
  93. name = name.split()[0]
  94. values = [v.split()[0] for v in values.split(",")]
  95. symbols[name] = self.create_edge(resolve(values[0]), resolve(values[1]))
  96. elif element_type == "Dict":
  97. values = [v.split()[0] for v in values.split(",")]
  98. if values[1] in complex_primitives:
  99. values[1] = string_to_instance(values[1])
  100. else:
  101. values[1] = eval(values[1])
  102. self.create_dict(resolve(values[0]), values[1], resolve(values[2]))
  103. else:
  104. raise Exception("Unknown element type: %s" % element_type)
  105. # Creation successful, now also create a pickle
  106. with open(picklefile, 'wb') as f:
  107. pickle.dump((symbols["root"], self.free_id, self.nodes, self.edges, self.values, self.cache, self.cache_node), f, pickle.HIGHEST_PROTOCOL)
  108. return symbols["root"]
  109. def read_root(self):
  110. return self.root
  111. def create_node(self):
  112. self.nodes.add(self.free_id)
  113. self.free_id += 1
  114. return self.free_id - 1
  115. def create_edge(self, source, target):
  116. if source not in self.edges and source not in self.nodes:
  117. return None
  118. elif target not in self.edges and target not in self.nodes:
  119. return None
  120. else:
  121. self.outgoing.setdefault(source, set()).add(self.free_id)
  122. self.incoming.setdefault(target, set()).add(self.free_id)
  123. self.edges[self.free_id] = (source, target)
  124. self.free_id += 1
  125. if source in self.edges:
  126. # We are creating something dict_readable
  127. # Fill in the cache already!
  128. dict_source, dict_target = self.edges[source]
  129. if target in self.values:
  130. self.cache.setdefault(dict_source, {})[self.values[target]] = source
  131. self.cache_node.setdefault(dict_source, {})[target] = source
  132. return self.free_id - 1
  133. def is_valid_datavalue(self, value):
  134. if isinstance(value, dict):
  135. if "value" in value and value["value"] in complex_primitives:
  136. return True
  137. else:
  138. return False
  139. elif not isinstance(value, primitive_types):
  140. return False
  141. elif isinstance(value, integer_types) and not (-2**63 <= value <= 2**64 - 1):
  142. return False
  143. return True
  144. def create_nodevalue(self, value):
  145. if not self.is_valid_datavalue(value):
  146. return None
  147. self.values[self.free_id] = value
  148. self.nodes.add(self.free_id)
  149. self.free_id += 1
  150. return self.free_id - 1
  151. def create_dict(self, source, data, destination):
  152. if source not in self.nodes and source not in self.edges:
  153. return None
  154. elif destination not in self.nodes and destination not in self.edges:
  155. return None
  156. elif not self.is_valid_datavalue(data):
  157. return None
  158. else:
  159. n = self.create_nodevalue(data)
  160. e = self.create_edge(source, destination)
  161. self.create_edge(e, n)
  162. self.cache.setdefault(source, {})[data] = e
  163. self.cache_node.setdefault(source, {})[n] = e
  164. def read_value(self, node):
  165. if node in self.values:
  166. return self.values[node]
  167. else:
  168. return None
  169. def read_outgoing(self, elem):
  170. if elem in self.edges or elem in self.nodes:
  171. if elem in self.outgoing:
  172. return list(self.outgoing[elem])
  173. else:
  174. return []
  175. return None
  176. def read_incoming(self, elem):
  177. if elem in self.edges or elem in self.nodes:
  178. if elem in self.incoming:
  179. return list(self.incoming[elem])
  180. else:
  181. return []
  182. else:
  183. return None
  184. def read_edge(self, edge):
  185. if edge in self.edges:
  186. return [self.edges[edge][0], self.edges[edge][1]]
  187. else:
  188. return [None, None]
  189. def read_dict(self, node, value):
  190. try:
  191. first = self.cache[node][value]
  192. # Got hit, so validate
  193. if (self.edges[first][0] == node) and \
  194. (value in [self.values[self.edges[i][1]] for i in self.outgoing[first] if self.edges[i][1] in self.values]):
  195. return self.edges[first][1]
  196. # Hit but invalid now
  197. del self.cache[node][value]
  198. except KeyError:
  199. # Didn't exist
  200. pass
  201. except:
  202. print(locals())
  203. raise
  204. return None
  205. def read_dict_keys(self, node):
  206. if node not in self.nodes and node not in self.edges:
  207. return None
  208. result = []
  209. #NOTE cannot just use the cache here, as some keys in the cache might not actually exist; we would have to check all of them anyway
  210. if node in self.outgoing:
  211. for e1 in self.outgoing[node]:
  212. if e1 in self.outgoing:
  213. for e2 in self.outgoing[e1]:
  214. result.append(self.edges[e2][1])
  215. return result
  216. def read_dict_edge(self, node, value):
  217. try:
  218. first = self.cache[node][value]
  219. # Got hit, so validate
  220. if (self.edges[first][0] == node) and \
  221. (value in [self.values[self.edges[i][1]] for i in self.outgoing[first] if self.edges[i][1] in self.values]):
  222. return first
  223. # Hit but invalid now
  224. del self.cache[node][value]
  225. except KeyError:
  226. # Didn't exist
  227. pass
  228. return None
  229. def read_dict_node(self, node, value_node):
  230. e = self.read_dict_node_edge(node, value_node)
  231. if e is None:
  232. return None
  233. else:
  234. self.cache_node.setdefault(node, {})[value_node] = e
  235. return self.edges[e][1]
  236. def read_dict_node_edge(self, node, value_node):
  237. try:
  238. first = self.cache_node[node][value_node]
  239. # Got hit, so validate
  240. if (self.edges[first][0] == node) and \
  241. (value_node in [self.edges[i][1] for i in self.outgoing[first]]):
  242. return first
  243. # Hit but invalid now
  244. del self.cache_node[node][value_node]
  245. except KeyError:
  246. # Didn't exist
  247. pass
  248. return None
  249. def read_reverse_dict(self, node, value):
  250. if node not in self.nodes and node not in self.edges:
  251. return None
  252. elif not self.is_valid_datavalue(value):
  253. return None
  254. # Get all outgoing links
  255. matches = []
  256. if node in self.incoming:
  257. for e1 in self.incoming[node]:
  258. # For each link, we read the links that might link to a data value
  259. if e1 in self.outgoing:
  260. for e2 in self.outgoing[e1]:
  261. # Now read out the target of the link
  262. target = self.edges[e2][1]
  263. # And access its value
  264. if target in self.values and self.values[target] == value:
  265. # Found a match
  266. matches.append(e1)
  267. return [self.edges[e][0] for e in matches]
  268. def delete_node(self, node):
  269. if node == self.root:
  270. return None
  271. elif node not in self.nodes:
  272. return None
  273. self.nodes.remove(node)
  274. if node in self.values:
  275. del self.values[node]
  276. s = set()
  277. if node in self.outgoing:
  278. for e in self.outgoing[node]:
  279. s.add(e)
  280. del self.outgoing[node]
  281. if node in self.incoming:
  282. for e in self.incoming[node]:
  283. s.add(e)
  284. del self.incoming[node]
  285. for e in s:
  286. self.delete_edge(e)
  287. if node in self.outgoing:
  288. del self.outgoing[node]
  289. if node in self.incoming:
  290. del self.incoming[node]
  291. return None
  292. def delete_edge(self, edge):
  293. if edge not in self.edges:
  294. return None
  295. s, t = self.edges[edge]
  296. if t in self.incoming:
  297. self.incoming[t].remove(edge)
  298. if s in self.outgoing:
  299. self.outgoing[s].remove(edge)
  300. del self.edges[edge]
  301. s = set()
  302. if edge in self.outgoing:
  303. for e in self.outgoing[edge]:
  304. s.add(e)
  305. if edge in self.incoming:
  306. for e in self.incoming[edge]:
  307. s.add(e)
  308. for e in s:
  309. self.delete_edge(e)
  310. if edge in self.outgoing:
  311. del self.outgoing[edge]
  312. if edge in self.incoming:
  313. del self.incoming[edge]
  314. if (self.GC) and (t in self.incoming and not self.incoming[t]) and (t not in self.edges):
  315. # Remove this node as well
  316. # Edges aren't deleted like this, as they might have a reachable target and source!
  317. # If they haven't, they will be removed because the source was removed.
  318. self.to_delete.add(t)
  319. def garbage_collect(self):
  320. while self.to_delete:
  321. t = self.to_delete.pop()
  322. if t in self.incoming and not self.incoming[t]:
  323. self.delete_node(t)
  324. def purge(self):
  325. self.garbage_collect()
  326. values = set(self.edges)
  327. values.update(self.nodes)
  328. visit_list = [self.root]
  329. while visit_list:
  330. elem = visit_list.pop()
  331. if elem in values:
  332. # Remove it from the leftover values
  333. values.remove(elem)
  334. if elem in self.edges:
  335. visit_list.extend(self.edges[elem])
  336. if elem in self.outgoing:
  337. visit_list.extend(self.outgoing[elem])
  338. if elem in self.incoming:
  339. visit_list.extend(self.incoming[elem])
  340. dset = set()
  341. for key in self.cache:
  342. if key not in self.nodes and key not in self.edges:
  343. dset.add(key)
  344. for key in dset:
  345. del self.cache[key]
  346. dset = set()
  347. for key in self.cache_node:
  348. if key not in self.nodes and key not in self.edges:
  349. dset.add(key)
  350. for key in dset:
  351. del self.cache_node[key]
  352. # All remaining elements are to be purged
  353. if len(values) > 0:
  354. while values:
  355. v = values.pop()
  356. if v in self.nodes:
  357. self.delete_node(v)