cbd_simulate.alc 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457
  1. include "primitives.alh"
  2. include "modelling.alh"
  3. include "object_operations.alh"
  4. include "conformance_scd.alh"
  5. include "io.alh"
  6. include "metamodels.alh"
  7. Boolean function main(model : Element):
  8. String cmd
  9. Boolean running
  10. Element schedule_init
  11. Element schedule_run
  12. Element schedule
  13. String conforming
  14. log("Start simulation of model!")
  15. schedule_init = create_schedule(model)
  16. schedule_run = read_root()
  17. while (bool_not(has_input())):
  18. if (read_attribute(model, "time", "start_time") == read_attribute(model, "time", "current_time")):
  19. schedule = schedule_init
  20. else:
  21. if (element_eq(schedule_run, read_root())):
  22. schedule_run = create_schedule(model)
  23. schedule = schedule_run
  24. //schedule = create_schedule(model)
  25. step_simulation(model, schedule)
  26. log("Finishing simulation, as we got input!")
  27. return True!
  28. Element function create_schedule(model : Element):
  29. // Create nice graph first
  30. Element nodes
  31. Element successors
  32. String element_name
  33. Element incoming_links
  34. Element all_blocks
  35. nodes = allInstances(model, "Block")
  36. successors = create_node()
  37. while (read_nr_out(nodes) > 0):
  38. element_name = set_pop(nodes)
  39. if (bool_not(dict_in(successors, element_name))):
  40. dict_add(successors, element_name, create_node())
  41. if (is_nominal_instance(model, element_name, "ICBlock")):
  42. if (element_eq(read_attribute(model, element_name, "last_in"), read_root())):
  43. incoming_links = allIncomingAssociationInstances(model, element_name, "InitialCondition")
  44. else:
  45. incoming_links = create_node()
  46. if (is_nominal_instance(model, element_name, "DerivatorBlock")):
  47. Element new_incoming_links
  48. new_incoming_links = allIncomingAssociationInstances(model, element_name, "Link")
  49. while (read_nr_out(new_incoming_links) > 0):
  50. list_append(incoming_links, set_pop(new_incoming_links))
  51. else:
  52. incoming_links = allIncomingAssociationInstances(model, element_name, "Link")
  53. while (read_nr_out(incoming_links) > 0):
  54. String source
  55. source = readAssociationSource(model, set_pop(incoming_links))
  56. if (bool_not(dict_in(successors, source))):
  57. dict_add(successors, source, create_node())
  58. set_add(successors[source], element_name)
  59. Element values
  60. values = create_node()
  61. dict_add(values, "S", create_node())
  62. dict_add(values, "index", 0)
  63. dict_add(values, "indices", create_node())
  64. dict_add(values, "lowlink", create_node())
  65. dict_add(values, "onStack", create_node())
  66. dict_add(values, "successors", successors)
  67. dict_add(values, "SCC", create_node())
  68. nodes = allInstances(model, "Block")
  69. while (read_nr_out(nodes) > 0):
  70. strongconnect(set_pop(nodes), values)
  71. return values["SCC"]!
  72. Integer function min(a : Integer, b : Integer):
  73. if (a < b):
  74. return a!
  75. else:
  76. return b!
  77. Void function strongconnect(v : String, values : Element):
  78. if (dict_in(values["indices"], v)):
  79. return!
  80. dict_overwrite(values["indices"], v, values["index"])
  81. dict_overwrite(values["lowlink"], v, values["index"])
  82. dict_overwrite(values, "index", cast_integer(values["index"]) + 1)
  83. list_append(values["S"], v)
  84. dict_overwrite(values["onStack"], v, True)
  85. Element successors
  86. String w
  87. successors = values["successors"][v]
  88. while (read_nr_out(successors) > 0):
  89. w = set_pop(successors)
  90. if (bool_not(dict_in(values["indices"], w))):
  91. strongconnect(w, values)
  92. dict_overwrite(values["lowlink"], v, min(values["lowlink"][v], values["lowlink"][w]))
  93. elif (dict_in(values["onStack"], w)):
  94. if (values["onStack"][w]):
  95. dict_overwrite(values["lowlink"], v, min(values["lowlink"][v], values["indices"][w]))
  96. if (value_eq(values["lowlink"][v], values["indices"][v])):
  97. Element scc
  98. scc = create_node()
  99. // It will always differ now
  100. w = list_pop_final(values["S"])
  101. list_append(scc, w)
  102. dict_overwrite(values["onStack"], w, False)
  103. while (w != v):
  104. w = list_pop_final(values["S"])
  105. list_append(scc, w)
  106. dict_overwrite(values["onStack"], w, False)
  107. list_insert(values["SCC"], scc, 0)
  108. return!
  109. String function readType(model : Element, name : String):
  110. return reverseKeyLookup(model["metamodel"]["model"], dict_read_node(model["type_mapping"], model["model"][name]))!
  111. Boolean function solve_scc(model : Element, scc : Element):
  112. Element m
  113. Integer i
  114. Integer j
  115. String block
  116. String blocktype
  117. Element incoming
  118. String selected
  119. Float constant
  120. Element t
  121. // Construct the matrix first, with as many rows as there are variables
  122. // Number of columns is 1 higher
  123. i = 0
  124. m = create_node()
  125. while (i < read_nr_out(scc)):
  126. j = 0
  127. t = create_node()
  128. while (j < (read_nr_out(scc) + 1)):
  129. list_append(t, 0.0)
  130. j = j + 1
  131. list_append(m, t)
  132. i = i + 1
  133. log("Matrix ready!")
  134. // Matrix initialized to 0.0
  135. i = 0
  136. while (i < read_nr_out(scc)):
  137. log("Creating matrix row")
  138. // First element of scc
  139. block = scc[i]
  140. blocktype = readType(model, block)
  141. // First write 1 in the current block
  142. dict_overwrite(m[i], i, 1.0)
  143. // Now check all blocks that are incoming
  144. if (blocktype == "AdditionBlock"):
  145. constant = 0.0
  146. elif (blocktype == "MultiplyBlock"):
  147. constant = 1.0
  148. log("Generating matrix for " + blocktype)
  149. log("Block: " + block)
  150. incoming = allIncomingAssociationInstances(model, block, "Link")
  151. Integer index_to_write_constant
  152. index_to_write_constant = -1
  153. log("Iterating over incoming")
  154. while (read_nr_out(incoming) > 0):
  155. log("Iteration")
  156. selected = readAssociationSource(model, set_pop(incoming))
  157. if (set_in(scc, selected)):
  158. // Part of the loop, so in the index of selected in scc
  159. // Five options:
  160. if (blocktype == "AdditionBlock"):
  161. // 1) AdditionBlock
  162. // Add the negative of this signal, which is as of yet unknown
  163. // x = y + z --> x - y - z = 0
  164. dict_overwrite(m[i], list_index_of(scc, selected), -1.0)
  165. elif (blocktype == "MultiplyBlock"):
  166. // 2) MultiplyBlock
  167. if (index_to_write_constant != -1):
  168. return False!
  169. index_to_write_constant = list_index_of(scc, selected)
  170. elif (blocktype == "NegatorBlock"):
  171. // 3) NegatorBlock
  172. // Add the positive of the signal, which is as of yet unknown
  173. dict_overwrite(m[i], list_index_of(scc, selected), 1.0)
  174. elif (blocktype == "DelayBlock"):
  175. // 5) DelayBlock
  176. // Just copies a single value
  177. dict_overwrite(m[i], list_index_of(scc, selected), -1.0)
  178. else:
  179. // Block that cannot be handled
  180. return False!
  181. else:
  182. // A constant, which we can assume is already computed and thus usable
  183. if (blocktype == "AdditionBlock"):
  184. constant = constant + cast_float(read_attribute(model, selected, "signal"))
  185. dict_overwrite(m[i], read_nr_out(scc), constant)
  186. elif (blocktype == "MultiplyBlock"):
  187. constant = constant * cast_float(read_attribute(model, selected, "signal"))
  188. // Not written to constant part, as multiplies a variable
  189. // Any other block is impossible:
  190. // * Constant would never be part of a SCC
  191. // * Delay would never get an incoming constant
  192. // * Negation and Inverse only get 1 input, which is a variable in a loop
  193. // * Integrator and Derivator never get an incoming constant
  194. if (index_to_write_constant != -1):
  195. dict_overwrite(m[i], index_to_write_constant, -constant)
  196. i = i + 1
  197. // Constructed a complete matrix, so we can start!
  198. log("Constructed matrix to solve:")
  199. log(matrix2string(m))
  200. // Solve matrix now
  201. eliminateGaussJordan(m)
  202. // Now go over m and set signals for each element
  203. // Assume that everything worked out...
  204. i = 0
  205. while (i < read_nr_out(m)):
  206. block = scc[i]
  207. unset_attribute(model, block, "signal")
  208. instantiate_attribute(model, block, "signal", m[i][read_nr_out(scc)])
  209. log((("Solved " + block) + " to ") + cast_string(m[i][read_nr_out(scc)]))
  210. i = i + 1
  211. return True!
  212. Integer function list_index_of(lst : Element, elem : Element):
  213. Integer i
  214. i = 0
  215. while (i < read_nr_out(lst)):
  216. if (value_eq(list_read(lst, i), elem)):
  217. return i!
  218. else:
  219. i = i + 1
  220. return -1!
  221. Void function step_simulation(model : Element, schedule : Element):
  222. String time
  223. Float signal
  224. Element incoming
  225. String selected
  226. String block
  227. String elem
  228. String blocktype
  229. Element memory_blocks
  230. Integer i
  231. Float delta_t
  232. Element scc
  233. time = "time"
  234. delta_t = 0.1
  235. memory_blocks = create_node()
  236. output("SIM_TIME " + cast_string(read_attribute(model, time, "current_time")))
  237. i = 0
  238. while (i < read_nr_out(schedule)):
  239. scc = list_read(schedule, i)
  240. i = i + 1
  241. if (list_len(scc) > 1):
  242. log("Solving algebraic loop!")
  243. if (bool_not(solve_scc(model, scc))):
  244. output("ALGEBRAIC_LOOP")
  245. return !
  246. else:
  247. block = set_pop(scc)
  248. // Execute "block"
  249. blocktype = readType(model, block)
  250. if (blocktype == "ConstantBlock"):
  251. signal = read_attribute(model, block, "value")
  252. elif (blocktype == "AdditionBlock"):
  253. signal = 0.0
  254. incoming = allIncomingAssociationInstances(model, block, "Link")
  255. while (read_nr_out(incoming) > 0):
  256. selected = readAssociationSource(model, set_pop(incoming))
  257. signal = signal + cast_float(read_attribute(model, selected, "signal"))
  258. elif (blocktype == "MultiplyBlock"):
  259. signal = 1.0
  260. incoming = allIncomingAssociationInstances(model, block, "Link")
  261. while (read_nr_out(incoming) > 0):
  262. selected = readAssociationSource(model, set_pop(incoming))
  263. signal = signal * cast_float(read_attribute(model, selected, "signal"))
  264. elif (blocktype == "NegatorBlock"):
  265. incoming = allIncomingAssociationInstances(model, block, "Link")
  266. signal = 0.0
  267. while (read_nr_out(incoming) > 0):
  268. selected = readAssociationSource(model, set_pop(incoming))
  269. signal = float_neg(cast_float(read_attribute(model, selected, "signal")))
  270. elif (blocktype == "InverseBlock"):
  271. signal = 0.0
  272. incoming = allIncomingAssociationInstances(model, block, "Link")
  273. while (read_nr_out(incoming) > 0):
  274. selected = readAssociationSource(model, set_pop(incoming))
  275. signal = float_division(1.0, cast_float(read_attribute(model, selected, "signal")))
  276. elif (blocktype == "DelayBlock"):
  277. signal = 0.0
  278. if (element_eq(read_attribute(model, block, "last_in"), read_root())):
  279. // No memory yet, so use initial condition
  280. incoming = allIncomingAssociationInstances(model, block, "InitialCondition")
  281. while (read_nr_out(incoming) > 0):
  282. selected = readAssociationSource(model, set_pop(incoming))
  283. signal = cast_float(read_attribute(model, selected, "signal"))
  284. else:
  285. signal = read_attribute(model, block, "last_in")
  286. unset_attribute(model, block, "last_in")
  287. set_add(memory_blocks, block)
  288. elif (blocktype == "IntegratorBlock"):
  289. if (element_eq(read_attribute(model, block, "last_in"), read_root())):
  290. // No history yet, so use initial values
  291. incoming = allIncomingAssociationInstances(model, block, "InitialCondition")
  292. while (read_nr_out(incoming) > 0):
  293. selected = readAssociationSource(model, set_pop(incoming))
  294. signal = cast_float(read_attribute(model, selected, "signal"))
  295. else:
  296. signal = cast_float(read_attribute(model, block, "last_in")) + (delta_t * cast_float(read_attribute(model, block, "last_out")))
  297. unset_attribute(model, block, "last_in")
  298. unset_attribute(model, block, "last_out")
  299. instantiate_attribute(model, block, "last_out", signal)
  300. set_add(memory_blocks, block)
  301. elif (blocktype == "DerivatorBlock"):
  302. if (element_eq(read_attribute(model, block, "last_in"), read_root())):
  303. // No history yet, so use initial values
  304. incoming = allIncomingAssociationInstances(model, block, "InitialCondition")
  305. while (read_nr_out(incoming) > 0):
  306. selected = readAssociationSource(model, set_pop(incoming))
  307. signal = cast_float(read_attribute(model, selected, "signal"))
  308. else:
  309. incoming = allIncomingAssociationInstances(model, block, "Link")
  310. while (read_nr_out(incoming) > 0):
  311. selected = readAssociationSource(model, set_pop(incoming))
  312. signal = (cast_float(read_attribute(model, selected, "signal")) - cast_float(read_attribute(model, block, "last_in"))) / delta_t
  313. unset_attribute(model, block, "last_in")
  314. set_add(memory_blocks, block)
  315. elif (blocktype == "ProbeBlock"):
  316. incoming = allIncomingAssociationInstances(model, block, "Link")
  317. while (read_nr_out(incoming) > 0):
  318. selected = readAssociationSource(model, set_pop(incoming))
  319. signal = cast_float(read_attribute(model, selected, "signal"))
  320. output((("SIM_PROBE " + cast_string(read_attribute(model, block, "name"))) + " ") + cast_string(signal))
  321. unset_attribute(model, block, "signal")
  322. instantiate_attribute(model, block, "signal", signal)
  323. output("SIM_END")
  324. while (read_nr_out(memory_blocks) > 0):
  325. block = set_pop(memory_blocks)
  326. // Update memory
  327. incoming = allIncomingAssociationInstances(model, block, "Link")
  328. while (read_nr_out(incoming) > 0):
  329. selected = readAssociationSource(model, set_pop(incoming))
  330. instantiate_attribute(model, block, "last_in", cast_float(read_attribute(model, selected, "signal")))
  331. // Increase simulation time
  332. Float new_time
  333. new_time = cast_float(read_attribute(model, time, "current_time")) + delta_t
  334. unset_attribute(model, time, "current_time")
  335. instantiate_attribute(model, time, "current_time", new_time)
  336. return !
  337. Void function eliminateGaussJordan(m : Element):
  338. Integer i
  339. Integer j
  340. Integer f
  341. Integer g
  342. Boolean searching
  343. Element t
  344. Float divisor
  345. i = 0
  346. j = 0
  347. while (i < read_nr_out(m)):
  348. // Make sure pivot m[i][j] != 0, swapping if necessary
  349. while (cast_float(m[i][j]) == 0.0):
  350. // Is zero, so find row which is not zero
  351. f = i + 1
  352. searching = True
  353. while (searching):
  354. if (f >= read_nr_out(m)):
  355. // No longer any rows left, so just increase column counter
  356. searching = False
  357. j = j + 1
  358. else:
  359. if (cast_float(m[f][j]) == 0.0):
  360. // Also zero, so continue
  361. f = f + 1
  362. else:
  363. // Found non-zero, so swap row
  364. t = cast_float(m[f])
  365. dict_overwrite(m, f, cast_float(m[i]))
  366. dict_overwrite(m, i, t)
  367. searching = False
  368. // If we have increased j, we will just start the loop again (possibly), as m[i][j] might be zero again
  369. // Pivot in m[i][j] guaranteed to not be 0
  370. // Now divide complete row by value of m[i][j] to make it equal 1
  371. f = j
  372. divisor = cast_float(m[i][j])
  373. while (f < read_nr_out(m[i])):
  374. dict_overwrite(m[i], f, float_division(cast_float(m[i][f]), divisor))
  375. f = f + 1
  376. // Eliminate all rows in the j-th column, except the i-th row
  377. f = 0
  378. while (f < read_nr_out(m)):
  379. if (bool_not(f == i)):
  380. g = j
  381. divisor = cast_float(m[f][j])
  382. while (g < read_nr_out(m[f])):
  383. dict_overwrite(m[f], g, cast_float(m[f][g]) - (divisor * cast_float(m[i][g])))
  384. g = g + 1
  385. f = f + 1
  386. // Increase row and column
  387. i = i + 1
  388. j = j + 1
  389. return !
  390. String function matrix2string(m : Element):
  391. Integer i
  392. Integer j
  393. String result
  394. result = ""
  395. i = 0
  396. while (i < read_nr_out(m)):
  397. j = 0
  398. while (j < read_nr_out(m[i])):
  399. result = result + cast_string(m[i][j]) + ", "
  400. j = j + 1
  401. i = i + 1
  402. result = result + "\n"
  403. return result!