|
|
@@ -26,7 +26,6 @@ class PatternMatching(object):
|
|
|
Returns an occurrence of a given pattern from the given Graph
|
|
|
"""
|
|
|
def __init__(self, optimize=True):
|
|
|
- # store the type of matching we want to use
|
|
|
self.optimize = optimize
|
|
|
|
|
|
def matchNaive(self, pattern, vertices, edges, pattern_vertices=None):
|
|
|
@@ -34,17 +33,19 @@ class PatternMatching(object):
|
|
|
Try to find an occurrence of the pattern in the Graph naively.
|
|
|
"""
|
|
|
|
|
|
- print('matchNaive...')
|
|
|
- print('pattern:', pattern)
|
|
|
- print('vertices:', vertices)
|
|
|
- print('edges:', edges)
|
|
|
- print('pattern_vertices:', pattern_vertices)
|
|
|
+ # print('matchNaive...')
|
|
|
+ # print('pattern.vertices:', pattern.vertices)
|
|
|
+ # print('pattern.edges:', pattern.edges)
|
|
|
+ # print('vertices:', vertices)
|
|
|
+ # print('edges:', edges)
|
|
|
+ # print('pattern_vertices:', pattern_vertices)
|
|
|
|
|
|
# allow call with specific arguments
|
|
|
if pattern_vertices == None:
|
|
|
pattern_vertices = pattern.vertices
|
|
|
|
|
|
def visitEdge(pattern_vertices, p_edge, inc, g_edges, visited_p_vertices, visited_p_edges, visited_g_vertices, visited_g_edges, vertices, edges):
|
|
|
+ # print('visitEdge')
|
|
|
"""
|
|
|
Visit a pattern edge, and try to bind it to a graph edge.
|
|
|
(If the first fails, try the second, and so on...)
|
|
|
@@ -70,6 +71,7 @@ class PatternMatching(object):
|
|
|
return False
|
|
|
|
|
|
def visitEdges(pattern_vertices, p_edges, inc, g_edges, visited_p_vertices, visited_p_edges, visited_g_vertices, visited_g_edges, vertices, edges):
|
|
|
+ # print('visitEdges')
|
|
|
"""
|
|
|
Visit all edges of the pattern vertex (edges given as argument).
|
|
|
We need to try visiting them for all its permutations, as matching
|
|
|
@@ -130,6 +132,7 @@ class PatternMatching(object):
|
|
|
return foundallEdges
|
|
|
|
|
|
def visitVertex(pattern_vertices, p_vertex, g_vertex, visited_p_vertices, visited_p_edges, visited_g_vertices, visited_g_edges, vertices, edges):
|
|
|
+ # print('visitVertex')
|
|
|
"""
|
|
|
Visit a pattern vertex, and try to bind it to the graph vertex
|
|
|
(both are given as argument). A binding is successful if all the
|
|
|
@@ -153,6 +156,7 @@ class PatternMatching(object):
|
|
|
return False
|
|
|
|
|
|
def visitVertices(pattern_vertices, p_vertex, visited_p_vertices, visited_p_edges, visited_g_vertices, visited_g_edges, vertices, edges):
|
|
|
+ # print('visitVertices')
|
|
|
"""
|
|
|
Visit a pattern vertex and try to bind a graph vertex to it.
|
|
|
"""
|
|
|
@@ -201,9 +205,9 @@ class PatternMatching(object):
|
|
|
"""
|
|
|
Return adjacency matrix and the order of the vertices.
|
|
|
"""
|
|
|
- print('createAdjacencyMatrixMap...')
|
|
|
- print('graph:', graph)
|
|
|
- print('pattern:', pattern)
|
|
|
+ # print('createAdjacencyMatrixMap...')
|
|
|
+ # print('graph:', graph)
|
|
|
+ # print('pattern:', pattern)
|
|
|
|
|
|
matrix = collections.OrderedDict() # { vertex, (index, [has edge from index to pos?]) }
|
|
|
|
|
|
@@ -253,9 +257,9 @@ class PatternMatching(object):
|
|
|
return AM, vertices_order
|
|
|
|
|
|
def matchVF2(self, pattern, graph):
|
|
|
- print('matchVF2...')
|
|
|
- print('pattern:', pattern)
|
|
|
- print('graph:', graph)
|
|
|
+ # print('matchVF2...')
|
|
|
+ # print('pattern:', pattern)
|
|
|
+ # print('graph:', graph)
|
|
|
|
|
|
class VF2_Obj(object):
|
|
|
"""
|
|
|
@@ -263,23 +267,24 @@ class PatternMatching(object):
|
|
|
"""
|
|
|
def __init__(self, len_graph_vertices, len_pattern_vertices):
|
|
|
# represents if n-the element (h[n] or p[n]) matched
|
|
|
- self.core_graph = [False]*len_graph_vertices
|
|
|
- self.core_pattern = [False]*len_pattern_vertices
|
|
|
+ self.host_vtx_is_matched = [False]*len_graph_vertices
|
|
|
+ self.pattern_vtx_is_matched = [False]*len_pattern_vertices
|
|
|
|
|
|
# save mapping from pattern to graph
|
|
|
self.mapping = {}
|
|
|
+ self.edge_mapping = {}
|
|
|
|
|
|
# preference lvl 1
|
|
|
# ordered set of vertices adjecent to M_graph connected via an outgoing edge
|
|
|
self.N_out_graph = [-1]*len_graph_vertices
|
|
|
# ordered set of vertices adjecent to M_pattern connected via an outgoing edge
|
|
|
- self.N_out_pattern = [-1]*len_pattern_vertices
|
|
|
+ self.N_out_pattern = [-1]*len_pattern_vertices
|
|
|
|
|
|
# preference lvl 2
|
|
|
# ordered set of vertices adjecent to M_graph connected via an incoming edge
|
|
|
self.N_inc_graph = [-1]*len_graph_vertices
|
|
|
# ordered set of vertices adjecent to M_pattern connected via an incoming edge
|
|
|
- self.N_inc_pattern = [-1]*len_pattern_vertices
|
|
|
+ self.N_inc_pattern = [-1]*len_pattern_vertices
|
|
|
|
|
|
# preference lvl 3
|
|
|
# not in the above
|
|
|
@@ -361,51 +366,53 @@ class PatternMatching(object):
|
|
|
|
|
|
# add all neihgbours of pattern vertex m
|
|
|
for i in range(0, len(P)): # P is a nxn-matrix
|
|
|
- if (P[m][i] or P[i][m]) and VF2_obj.core_pattern[i]:
|
|
|
+ if (P[m][i] or P[i][m]) and VF2_obj.pattern_vtx_is_matched[i]:
|
|
|
neighbours_pattern.setdefault(p[i].type, set()).add(p[i])
|
|
|
|
|
|
# add all neihgbours of graph vertex n
|
|
|
for i in range(0, len(H)): # P is a nxn-matrix
|
|
|
- if (H[n][i] or H[i][n]) and VF2_obj.core_graph[i]:
|
|
|
+ if (H[n][i] or H[i][n]) and VF2_obj.host_vtx_is_matched[i]:
|
|
|
neighbours_graph.setdefault(h[i].type, set()).add(h[i])
|
|
|
|
|
|
# take a coding shortcut,
|
|
|
# use self.matchNaive function to see if it is feasable.
|
|
|
# this way, we immidiatly test the semantic attributes
|
|
|
- if not self.matchNaive(pattern, pattern_vertices=neighbours_pattern, vertices=neighbours_graph, edges=graph.edges):
|
|
|
+ # print('pattern.vertices', pattern.vertices)
|
|
|
+ matched = self.matchNaive(pattern, pattern_vertices=neighbours_pattern, vertices=neighbours_graph, edges=graph.edges)
|
|
|
+ if matched == None:
|
|
|
return False
|
|
|
|
|
|
- # count ext_edges from core_graph to a adjecent vertices and
|
|
|
+ # count ext_edges from host_vtx_is_matched to a adjecent vertices and
|
|
|
# cuotn ext_edges for adjecent vertices and not matched vertices
|
|
|
# connected via the ext_edges
|
|
|
ext_edges_graph_ca = 0
|
|
|
ext_edges_graph_an = 0
|
|
|
# for all core vertices
|
|
|
- for x in range(0, len(VF2_obj.core_graph)):
|
|
|
+ for x in range(0, len(VF2_obj.host_vtx_is_matched)):
|
|
|
# for all its neighbours
|
|
|
for y in range(0, len(H)):
|
|
|
if H[x][y]:
|
|
|
# if it is a neighbor and not yet matched
|
|
|
- if (VF2_obj.N_out_graph[y] != -1 or VF2_obj.N_inc_graph[y] != -1) and VF2_obj.core_graph[y]:
|
|
|
+ if (VF2_obj.N_out_graph[y] != -1 or VF2_obj.N_inc_graph[y] != -1) and VF2_obj.host_vtx_is_matched[y]:
|
|
|
# if we matched it
|
|
|
- if VF2_obj.core_graph[x] != -1:
|
|
|
+ if VF2_obj.host_vtx_is_matched[x] != -1:
|
|
|
ext_edges_graph_ca += 1
|
|
|
else:
|
|
|
ext_edges_graph_an += 1
|
|
|
|
|
|
- # count ext_edges from core_pattern to a adjecent vertices
|
|
|
+ # count ext_edges from pattern_vtx_is_matched to a adjecent vertices
|
|
|
# connected via the ext_edges
|
|
|
ext_edges_pattern_ca = 0
|
|
|
ext_edges_pattern_an = 0
|
|
|
# for all core vertices
|
|
|
- for x in range(0, len(VF2_obj.core_pattern)):
|
|
|
+ for x in range(0, len(VF2_obj.pattern_vtx_is_matched)):
|
|
|
# for all its neighbours
|
|
|
for y in range(0, len(P)):
|
|
|
if P[x][y]:
|
|
|
# if it is a neighbor and not yet matched
|
|
|
- if (VF2_obj.N_out_pattern[y] != -1 or VF2_obj.N_inc_pattern[y] != -1) and VF2_obj.core_pattern[y]:
|
|
|
+ if (VF2_obj.N_out_pattern[y] != -1 or VF2_obj.N_inc_pattern[y] != -1) and VF2_obj.pattern_vtx_is_matched[y]:
|
|
|
# if we matched it
|
|
|
- if VF2_obj.core_pattern[x] != -1:
|
|
|
+ if VF2_obj.pattern_vtx_is_matched[x] != -1:
|
|
|
ext_edges_pattern_ca += 1
|
|
|
else:
|
|
|
ext_edges_pattern_an += 1
|
|
|
@@ -425,9 +432,9 @@ class PatternMatching(object):
|
|
|
if ext_edges_pattern_an > ext_edges_graph_an:
|
|
|
return False
|
|
|
|
|
|
- return True
|
|
|
+ return matched
|
|
|
|
|
|
- def matchPhase(H, P, h, p, index_M, VF2_obj, n, m):
|
|
|
+ def matchPhase(index_M, VF2_obj, n, m):
|
|
|
"""
|
|
|
The matching fase of the VF2 algorithm. If the chosen n, m pair
|
|
|
passes the feasibilityTest, the pair gets added and we start
|
|
|
@@ -448,12 +455,15 @@ class PatternMatching(object):
|
|
|
return False # already visited this (partial) match -> skip
|
|
|
|
|
|
|
|
|
- if feasibilityTest(H, P, h, p, VF2_obj, n, m):
|
|
|
- print(self.indent*" ","adding to match:", n, "->", m)
|
|
|
+ matched = feasibilityTest(H, P, h, p, VF2_obj, n, m)
|
|
|
+
|
|
|
+ if matched != False:
|
|
|
+ # print(self.indent*" ","adding to match:", n, "->", m)
|
|
|
# adapt VF2_obj
|
|
|
- VF2_obj.core_graph[n] = True
|
|
|
- VF2_obj.core_pattern[m] = True
|
|
|
+ VF2_obj.host_vtx_is_matched[n] = True
|
|
|
+ VF2_obj.pattern_vtx_is_matched[m] = True
|
|
|
VF2_obj.mapping[h[n]] = p[m]
|
|
|
+ # VF2_obj.edge_mapping
|
|
|
addOutNeighbours(H[n], VF2_obj.N_out_graph, index_M)
|
|
|
addIncNeighbours(H, n, VF2_obj.N_inc_graph, index_M)
|
|
|
addOutNeighbours(P[m], VF2_obj.N_out_pattern, index_M)
|
|
|
@@ -475,11 +485,11 @@ class PatternMatching(object):
|
|
|
|
|
|
if True:
|
|
|
# else:
|
|
|
- print(self.indent*" ","backtracking... remove", n, "->", m)
|
|
|
+ # print(self.indent*" ","backtracking... remove", n, "->", m)
|
|
|
|
|
|
# else, backtrack, adapt VF2_obj
|
|
|
- VF2_obj.core_graph[n] = False
|
|
|
- VF2_obj.core_pattern[m] = False
|
|
|
+ VF2_obj.host_vtx_is_matched[n] = False
|
|
|
+ VF2_obj.pattern_vtx_is_matched[m] = False
|
|
|
del VF2_obj.mapping[h[n]]
|
|
|
delNeighbours(VF2_obj.N_out_graph, index_M)
|
|
|
delNeighbours(VF2_obj.N_inc_graph, index_M)
|
|
|
@@ -488,7 +498,7 @@ class PatternMatching(object):
|
|
|
|
|
|
return False
|
|
|
|
|
|
- def preferred(H, P, h, p, index_M, VF2_obj, N_graph, N_pattern):
|
|
|
+ def preferred(index_M, VF2_obj, N_graph, N_pattern):
|
|
|
"""
|
|
|
Try to match the adjacency vertices connected via outgoing
|
|
|
or incoming edges. (Depending on what is given for N_graph and
|
|
|
@@ -497,23 +507,23 @@ class PatternMatching(object):
|
|
|
for n in range(0, len(N_graph)):
|
|
|
# skip graph vertices that are not in VF2_obj.N_out_graph
|
|
|
# (or already matched)
|
|
|
- if N_graph[n] == -1 or VF2_obj.core_graph[n]:
|
|
|
+ if N_graph[n] == -1 or VF2_obj.host_vtx_is_matched[n]:
|
|
|
# print(self.indent*" "," skipping")
|
|
|
continue
|
|
|
- print(self.indent*" "," n:", n)
|
|
|
+ # print(self.indent*" "," n:", n)
|
|
|
for m in range(0, len(N_pattern)):
|
|
|
# skip graph vertices that are not in VF2_obj.N_out_pattern
|
|
|
# (or already matched)
|
|
|
- if N_pattern[m] == -1 or VF2_obj.core_pattern[m]:
|
|
|
+ if N_pattern[m] == -1 or VF2_obj.pattern_vtx_is_matched[m]:
|
|
|
continue
|
|
|
- print(self.indent*" "," m:", m)
|
|
|
- matched = yield from matchPhase(H, P, h, p, index_M, VF2_obj, n, m)
|
|
|
+ # print(self.indent*" "," m:", m)
|
|
|
+ matched = yield from matchPhase(index_M, VF2_obj, n, m)
|
|
|
if matched:
|
|
|
return True
|
|
|
|
|
|
return False
|
|
|
|
|
|
- def leastPreferred(H, P, h, p, index_M, VF2_obj):
|
|
|
+ def leastPreferred(index_M, VF2_obj):
|
|
|
"""
|
|
|
Try to match the vertices that are not connected to the curretly
|
|
|
matched vertices.
|
|
|
@@ -521,28 +531,28 @@ class PatternMatching(object):
|
|
|
for n in range(0, len(VF2_obj.N_out_graph)):
|
|
|
# skip vertices that are connected to the graph
|
|
|
# (or already matched)
|
|
|
- if not (VF2_obj.N_out_graph[n] == -1 and VF2_obj.N_inc_graph[n] == -1) or VF2_obj.core_graph[n]:
|
|
|
+ if not (VF2_obj.N_out_graph[n] == -1 and VF2_obj.N_inc_graph[n] == -1) or VF2_obj.host_vtx_is_matched[n]:
|
|
|
# print(self.indent*" "," skipping")
|
|
|
continue
|
|
|
- print(" n:", n)
|
|
|
+ # print(" n:", n)
|
|
|
for m in range(0, len(VF2_obj.N_out_pattern)):
|
|
|
# skip vertices that are connected to the graph
|
|
|
# (or already matched)
|
|
|
- if not (VF2_obj.N_out_pattern[m] == -1 and VF2_obj.N_inc_pattern[m] == -1) or VF2_obj.core_pattern[m]:
|
|
|
+ if not (VF2_obj.N_out_pattern[m] == -1 and VF2_obj.N_inc_pattern[m] == -1) or VF2_obj.pattern_vtx_is_matched[m]:
|
|
|
# print(self.indent*" "," skipping")
|
|
|
continue
|
|
|
- print(self.indent*" "," m:", m)
|
|
|
- matched = yield from matchPhase(H, P, h, p, index_M, VF2_obj, n, m)
|
|
|
+ # print(self.indent*" "," m:", m)
|
|
|
+ matched = yield from matchPhase(index_M, VF2_obj, n, m)
|
|
|
if matched:
|
|
|
return True
|
|
|
|
|
|
return False
|
|
|
|
|
|
- print(self.indent*" ","index_M:", index_M)
|
|
|
+ # print(self.indent*" ","index_M:", index_M)
|
|
|
|
|
|
# We are at the end, we found an candidate.
|
|
|
if index_M == len(p):
|
|
|
- print(self.indent*" ","end...")
|
|
|
+ # print(self.indent*" ","end...")
|
|
|
bound_graph_vertices = {}
|
|
|
for vertex_bound, _ in VF2_obj.mapping.items():
|
|
|
bound_graph_vertices.setdefault(vertex_bound.type, set()).add(vertex_bound)
|
|
|
@@ -555,28 +565,28 @@ class PatternMatching(object):
|
|
|
if index_M > 0:
|
|
|
# try the candidates is the preffered order
|
|
|
# first try the adjacent vertices connected via the outgoing edges.
|
|
|
- print(self.indent*" ","preferred L1")
|
|
|
- matched = yield from preferred(H, P, h, p, index_M, VF2_obj, VF2_obj.N_out_graph, VF2_obj.N_out_pattern)
|
|
|
+ # print(self.indent*" ","preferred L1")
|
|
|
+ matched = yield from preferred(index_M, VF2_obj, VF2_obj.N_out_graph, VF2_obj.N_out_pattern)
|
|
|
if matched:
|
|
|
return True
|
|
|
|
|
|
- print(self.indent*" ","preferred L2")
|
|
|
+ # print(self.indent*" ","preferred L2")
|
|
|
# then try the adjacent vertices connected via the incoming edges.
|
|
|
- matched = yield from preferred(H, P, h, p, index_M, VF2_obj, VF2_obj.N_inc_graph, VF2_obj.N_inc_pattern)
|
|
|
+ matched = yield from preferred(index_M, VF2_obj, VF2_obj.N_inc_graph, VF2_obj.N_inc_pattern)
|
|
|
if matched:
|
|
|
return True
|
|
|
|
|
|
- print(self.indent*" ","leastPreferred")
|
|
|
+ # print(self.indent*" ","leastPreferred")
|
|
|
# and lastly, try the vertices not connected to the currently matched vertices
|
|
|
- matched = yield from leastPreferred(H, P, h, p, index_M, VF2_obj)
|
|
|
+ matched = yield from leastPreferred(index_M, VF2_obj)
|
|
|
if matched:
|
|
|
return True
|
|
|
|
|
|
return False
|
|
|
|
|
|
- # create adjecency matrix of the graph
|
|
|
+ # create adjacency matrix of the graph
|
|
|
H, h = self.createAdjacencyMatrixMap(graph, pattern)
|
|
|
- # create adjecency matrix of the pattern
|
|
|
+ # create adjacency matrix of the pattern
|
|
|
P, p = self.createAdjacencyMatrixMap(pattern, pattern)
|
|
|
|
|
|
VF2_obj = VF2_Obj(len(h), len(p))
|