|
|
@@ -87,23 +87,11 @@ def model_to_graph(state: State, model: UUID, metamodel: UUID,
|
|
|
|
|
|
mvs_edges = []
|
|
|
modelrefs = {}
|
|
|
- # constraints = {}
|
|
|
-
|
|
|
names = {}
|
|
|
|
|
|
def to_vtx(el, name):
|
|
|
# print("name:", name)
|
|
|
if bottom.is_edge(el):
|
|
|
- # if filter_constraint:
|
|
|
- # try:
|
|
|
- # supposed_obj = bottom.read_edge_source(el)
|
|
|
- # slot_node = od.get_slot(supposed_obj, "constraint")
|
|
|
- # if el == slot_node:
|
|
|
- # # `el` is the constraint-slot
|
|
|
- # constraints[supposed_obj] = el
|
|
|
- # return
|
|
|
- # except:
|
|
|
- # pass
|
|
|
mvs_edges.append(el)
|
|
|
edge = MVSEdge(el, name)
|
|
|
names[name] = edge
|
|
|
@@ -138,57 +126,25 @@ def model_to_graph(state: State, model: UUID, metamodel: UUID,
|
|
|
tgt=uuid_to_vtx[mvs_tgt],
|
|
|
label="tgt"))
|
|
|
|
|
|
-
|
|
|
for node, (ref_m, name) in modelrefs.items():
|
|
|
vtx = uuid_to_vtx[node]
|
|
|
-
|
|
|
# Get MM of ref'ed model
|
|
|
ref_mm, = bottom.read_outgoing_elements(node, "Morphism")
|
|
|
- # print("modelref type node:", type_node)
|
|
|
-
|
|
|
- # Recursively convert ref'ed model to graph
|
|
|
- # ref_graph = model_to_graph(state, ref_m, ref_mm, prefix=name+'/')
|
|
|
-
|
|
|
vtx.modelref = (ref_m, ref_mm)
|
|
|
|
|
|
- # We no longer flatten:
|
|
|
-
|
|
|
- # # Flatten and create link to ref'ed model
|
|
|
- # graph.vtxs += ref_model.vtxs
|
|
|
- # graph.edges += ref_model.edges
|
|
|
- # graph.edges.append(Edge(
|
|
|
- # src=uuid_to_vtx[node],
|
|
|
- # tgt=ref_model.vtxs[0], # which node to link to?? dirty
|
|
|
- # label="modelref"))
|
|
|
-
|
|
|
def add_types(node):
|
|
|
vtx = uuid_to_vtx[node]
|
|
|
type_node, = bottom.read_outgoing_elements(node, "Morphism")
|
|
|
-
|
|
|
# Put the type straight into the Vertex-object
|
|
|
# The benefit is that our Vertex-matching callback can then be coded cleverly, look at the types first, resulting in better performance
|
|
|
vtx.typ = type_node
|
|
|
|
|
|
- # The old approach (creating special vertices containing the types), commented out:
|
|
|
-
|
|
|
- # print('node', node, 'has type', type_node)
|
|
|
- # We create a Vertex storing the type
|
|
|
- # type_vertex = Vertex(value=IS_TYPE(type_node))
|
|
|
- # graph.vtxs.append(type_vertex)
|
|
|
- # type_edge = Edge(
|
|
|
- # src=uuid_to_vtx[node],
|
|
|
- # tgt=type_vertex,
|
|
|
- # label="type")
|
|
|
- # # print(type_edge)
|
|
|
- # graph.edges.append(type_edge)
|
|
|
-
|
|
|
# Add typing information for:
|
|
|
# - classes
|
|
|
# - attributes
|
|
|
# - associations
|
|
|
for class_name, class_node in scd_mm.get_classes().items():
|
|
|
objects = scd.get_typed_by(class_node)
|
|
|
- # print("typed by:", class_name, objects)
|
|
|
for obj_name, obj_node in objects.items():
|
|
|
if _filter(obj_node):
|
|
|
add_types(obj_node)
|
|
|
@@ -199,7 +155,6 @@ def model_to_graph(state: State, model: UUID, metamodel: UUID,
|
|
|
add_types(slot_node)
|
|
|
for assoc_name, assoc_node in scd_mm.get_associations().items():
|
|
|
objects = scd.get_typed_by(assoc_node)
|
|
|
- # print("typed by:", assoc_name, objects)
|
|
|
for link_name, link_node in objects.items():
|
|
|
if _filter(link_node):
|
|
|
add_types(link_node)
|
|
|
@@ -248,10 +203,12 @@ def match_od(state, host_m, host_mm, pattern_m, pattern_mm, pivot={}):
|
|
|
except KeyError:
|
|
|
return False
|
|
|
|
|
|
- return cdapi.is_subtype(
|
|
|
+ types_ok = cdapi.is_subtype(
|
|
|
super_type_name=guest_type_name_unramified,
|
|
|
sub_type_name=host_type_name)
|
|
|
|
|
|
+ return types_ok
|
|
|
+
|
|
|
# Memoizing the result of comparison gives a huge performance boost!
|
|
|
# Especially `is_subtype_of` is very slow, and will be performed many times over on the same pair of nodes during the matching process.
|
|
|
# Assuming the model is not altered *during* matching, this is safe.
|
|
|
@@ -262,7 +219,8 @@ def match_od(state, host_m, host_mm, pattern_m, pattern_mm, pivot={}):
|
|
|
if not hasattr(h_vtx, 'typ'):
|
|
|
# if guest has a type, host must have a type
|
|
|
return False
|
|
|
- return self.match_types(g_vtx.typ, h_vtx.typ)
|
|
|
+ if not self.match_types(g_vtx.typ, h_vtx.typ):
|
|
|
+ return False
|
|
|
|
|
|
if hasattr(g_vtx, 'modelref'):
|
|
|
if not hasattr(h_vtx, 'modelref'):
|
|
|
@@ -271,7 +229,9 @@ def match_od(state, host_m, host_mm, pattern_m, pattern_mm, pivot={}):
|
|
|
python_code = services_od.read_primitive_value(self.bottom, g_vtx.node_id, pattern_mm)[0]
|
|
|
|
|
|
try:
|
|
|
- # Try to execute code, but if the `matched` API-function is called, we fail.
|
|
|
+ # Try to execute code, but the likelyhood of failing is high:
|
|
|
+ # - the `matched` API function is not yet available
|
|
|
+ # - incompatible slots may be matched (it is only when their AttributeLinks are matched, that we know the types will be compatible)
|
|
|
with Timer(f'EVAL condition {g_vtx.name}'):
|
|
|
ok = exec_then_eval(python_code,
|
|
|
_globals={
|
|
|
@@ -281,8 +241,7 @@ def match_od(state, host_m, host_mm, pattern_m, pattern_mm, pivot={}):
|
|
|
_locals={'this': h_vtx.node_id})
|
|
|
self.conditions_to_check.pop(g_vtx.name, None)
|
|
|
return ok
|
|
|
- except _No_Matched:
|
|
|
- # The code made a call to the `matched`-function.
|
|
|
+ except:
|
|
|
self.conditions_to_check[g_vtx.name] = python_code
|
|
|
return True # to be determined later, if it's actually a match
|
|
|
|