123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115 |
- import abc
- import random
- import math
- import functools
- import sys
- from typing import Callable, Generator
- from framework.conformance import Conformance, render_conformance_check_result
- from concrete_syntax.common import indent
- from concrete_syntax.textual_od.renderer import render_od
- from transformation.cloner import clone_od
- from api.od import ODAPI
- class DecisionMaker:
- @abc.abstractmethod
- def __call__(self, actions):
- pass
- class RandomDecisionMaker(DecisionMaker):
- def __init__(self, seed=0, verbose=True):
- self.seed = seed
- self.r = random.Random(seed)
- def __str__(self):
- return f"RandomDecisionMaker(seed={self.seed})"
- def __call__(self, actions):
- arr = [action for descr, action in actions]
- if len(arr) == 0:
- return
- i = math.floor(self.r.random()*len(arr))
- return arr[i]
- class InteractiveDecisionMaker(DecisionMaker):
- # auto_proceed: whether to prompt if there is only one enabled action
- def __init__(self, msg="Select action:", auto_proceed=False):
- self.msg = msg
- self.auto_proceed = auto_proceed
- def __str__(self):
- return f"InteractiveDecisionMaker()"
- def __call__(self, actions):
- arr = []
- for i, (key, result) in enumerate(actions):
- print(f" {chr(97+i)}. {key}")
- arr.append(result)
- if len(arr) == 0:
- return
- if len(arr) == 1 and self.auto_proceed:
- return arr[0]
- def __choose():
- sys.stdout.write(f"{self.msg} ")
- try:
- raw = input()
- choice = ord(raw)-97 # may raise ValueError
- if choice >= 0 and choice < len(arr):
- return arr[choice]
- except (ValueError, TypeError):
- pass
- print("Invalid option")
- return __choose()
- return __choose()
- class MinimalSimulator:
- def __init__(self,
- action_generator: Callable[[any], Generator[any, None, None]],
- decision_maker: DecisionMaker = RandomDecisionMaker(seed=0),
- # Returns 'None' to keep running, or a string to end simulation
- # Can also have side effects, such as rendering the model, and performing a conformance check.
- # BTW, Simulation will always end when there are no more enabled actions.
- termination_condition=lambda model: None,
- verbose=True,
- ):
- self.action_generator = action_generator
- self.decision_maker = decision_maker
- self.termination_condition = termination_condition
- self.verbose = verbose
- def _print(self, *args):
- if self.verbose:
- print(*args)
- # Run simulation until termination condition satisfied
- def run(self, model):
- self._print("Start simulation")
- self._print(f"Decision maker: {self.decision_maker}")
- step_counter = 0
- while step_counter < 10:
- termination_reason = self.termination_condition(model)
- if termination_reason != None:
- self._print(f"Termination condition satisfied.\nReason: {termination_reason}.")
- break
- chosen_action = self.decision_maker(self.action_generator(model))
- if chosen_action == None:
- self._print(f"No enabled actions.")
- break
- (model, msgs) = chosen_action()
- self._print(indent('\n'.join(f"▸ {msg}" for msg in msgs), 4))
- step_counter += 1
- self._print(f"Executed {step_counter} steps.")
- return model
|