|
|
@@ -59,9 +59,9 @@ def analyze(fname):
|
|
|
vessel = Vessel(first["mmsi"], tmap[str(first["mmsi"])], first["ts"], -1, get_dock(first["lon"], first["lat"]),
|
|
|
(first["lon"], first["lat"]), (first["lon"], first["lat"]), 0.0, tasks[task])
|
|
|
|
|
|
- if exists("../results-de/%s-de.csv" % str(vessel.mmsi)):
|
|
|
- print("Already done %s" % str(vessel.mmsi))
|
|
|
- return None
|
|
|
+ # if exists("../results-de/%s-de.csv" % str(vessel.mmsi)):
|
|
|
+ # print("Already done %s" % str(vessel.mmsi))
|
|
|
+ # return None
|
|
|
|
|
|
in_dock = get_dock(first["lon"], first["lat"]) != ""
|
|
|
time = first["ts"]
|
|
|
@@ -69,11 +69,20 @@ def analyze(fname):
|
|
|
# Check if you are at a new location
|
|
|
new_loc = get_dock(row["lon"], row["lat"])
|
|
|
|
|
|
+ # dd = haversine(vessel.lonlat_t[0], vessel.lonlat_t[1], row["lon"], row["lat"])
|
|
|
+ # delta = (row["ts"] - time) / 1000
|
|
|
+ # # cutoff point:
|
|
|
+ # if dd / delta > 6:
|
|
|
+ # print("Weird velocity:", dd, delta, dd/delta)
|
|
|
+
|
|
|
if new_loc != vessel.location:
|
|
|
# fix for teleportation issue
|
|
|
# add intermediate points on which dock/sailing transition is assumed
|
|
|
# it is assumed that these points lie on the theoretical trajectory => APPROXIMATION
|
|
|
|
|
|
+ # path = [vessel.lonlat_t, (row["lon"], row["lat"])]
|
|
|
+ # dists = [haversine(*vessel.lonlat_t, row["lon"], row["lat"])]
|
|
|
+
|
|
|
path, dists = pathfinder(graph, vessel.lonlat_t, (row["lon"], row["lat"]))
|
|
|
tot_dist = sum(dists)
|
|
|
|
|
|
@@ -138,12 +147,12 @@ if __name__ == '__main__':
|
|
|
# print(get_dock(4.242435, 51.27712))
|
|
|
# import sys
|
|
|
# analyze(sys.argv[2])
|
|
|
- # analyze("results/205257290.csv")
|
|
|
-
|
|
|
- TFILE = "tugs.csv"
|
|
|
- tugs = pd.read_csv(TFILE)
|
|
|
- mmsi = tugs["MMSI"].dropna().astype(np.int32)
|
|
|
- for idx in mmsi:
|
|
|
- print("checking", idx)
|
|
|
- analyze("results/%s.csv" % str(idx))
|
|
|
- print(idx, "done")
|
|
|
+ analyze("results/205627000.csv")
|
|
|
+
|
|
|
+ # TFILE = "tugs.csv"
|
|
|
+ # tugs = pd.read_csv(TFILE)
|
|
|
+ # mmsi = tugs["MMSI"].dropna().astype(np.int32)
|
|
|
+ # for idx in mmsi:
|
|
|
+ # print("checking", idx)
|
|
|
+ # analyze("results/%s.csv" % str(idx))
|
|
|
+ # print(idx, "done")
|