
Statecharts Modelling and Simulation
Simon Van Mierlo Hans Vangheluwe

PRESENTERS

SIMON VAN MIERLO is a post-doctoral researcher at
the University of Antwerp (Belgium). He is a member of
the Modelling, Simulation and Design (MSDL) research lab.
For his PhD thesis, he developed debugging techniques for
modelling and simulation formalisms by explicitly modelling
their executor’s control flow using Statecharts. He is the main
developer and maintainer of SCCD [1], a hybrid formalism
that combines Statecharts with class diagrams. His e-mail
address is Simon.VanMierlo@uantwerpen.be.

HANS VANGHELUWE is a Professor at the University of
Antwerp (Belgium), an Adjunct Professor at McGill Univer-
sity (Canada) and an Adjunct Professor at the National Univer-
sity of Defense Technology (NUDT) in Changsha, China. He
heads the Modelling, Simulation and Design (MSDL) research
lab. In a variety of projects, often with industrial partners, he
develops and applies the model-based theory and techniques
of Multi-Paradigm Modelling (MPM). His current interests
are in domain-specific modelling and simulation, including
the development of graphical user interfaces for multiple
platforms. To model such reactive systems, he advocates the
use of Statecharts to describe their behaviour. His e-mail
address is Hans.Vangheluwe@uantwerpen.be.

ABSTRACT

Statecharts, introduced by Harel [2], is used to specify
complex, timed, reactive, autonomous discrete-event systems.
It is an extension of Timed Finite State Automata which adds
depth, orthogonality, broadcast communication and history. Its
visual representation is based on higraphs, which combine
graphs and Venn diagrams [3]. This representation is most
suited to represent Statecharts models, and many tools offer
visual editing and simulation support for the Statecharts for-
malism. Examples include STATEMATE [4], Rhapsody [5],
Yakindu 1, and Stateflow 2.

This tutorial introduces Statecharts modelling, simulation,
and testing. As a running example, the behaviour of a simple
timed, autonomous, reactive system is modelled: a traffic light.
We start from the basic concepts of states and transitions and
explain the more advanced concepts of Statecharts by extend-
ing the example incrementally. We discuss several semantics
options, such as STATEMATE and Rhapsody semantics. We
use Yakindu to model the example system.

1https://www.itemis.com/en/yakindu/statechart-tools/
2https://www.mathworks.com/products/stateflow.html

KEYWORDS

Statecharts, reactive systems, testing, Yakindu

LENGTH

The proposed length of the tutorial is three hours.

LEVEL OF THE TUTORIAL

Introductory. No knowledge of Statecharts or the tool
(Yakindu) is necessary.

TARGET AUDIENCE

Modellers with an interest in specifying the behaviour of
reactive systems using Statecharts.

NOVELTY

This tutorial has previously been given (in 2017) at the
Spring Simulation Multi-Conference (SpringSim)3. Due to
the success of this tutorial, a second edition of the tutorial
is scheduled for the 2018 edition of this conference. Since
this conference is mainly targeted at an audience with a
simulation background, the tutorial focuses on the introduction
of Statecharts as a modelling formalism for specifying reactive
systems, and covers the basics of Statecharts. For the audience
at the MoDELS conference, we will discuss Statecharts more
extensively and in-depth, focusing on the applicability to more
complex systems than the running example.

DESCRIPTION OF THE TUTORIAL AND INTENDED OUTLINE

The tutorial starts by explaining the causes of complex-
ity in reactive systems, and explains why Statecharts is an
appropriate formalism to model their behaviour. A workflow
for specifying, simulating, testing, and deploying Statecharts
models is presented, and a running example is used to discuss
the features of the Statecharts language and the Yakindu
modelling and simulation tool. As a last step, the system is
deployed by generating code from the model.

A more in-depth discussion of the steps presented during
the tutorial is provided below.

• Explanation of the source of (essential) complexity in
engineered systems, which often can be attributed to
them having timed, reactive, autonomous behaviour. A
number of such systems are presented to demonstrate
this complexity. To effectively develop these systems,
traditional approaches based on threads and timeouts add
accidental complexity. These approaches focus on “how”
the system’s behaviour is implemented, instead of “what”
the system is supposed to do. Instead, a language which

3http://scs.org/springsim

Simon.VanMierlo@uantwerpen.be
Hans.Vangheluwe@uantwerpen.be
https://www.itemis.com/en/yakindu/statechart-tools/
https://www.mathworks.com/products/stateflow.html
http://scs.org/springsim


has notions of events, timeouts and concurrent units is
needed.

• Introduction of the notion of discrete-event abstraction,
in which a system’s autonomous behaviour can be inter-
rupted by external events coming from the environment,
and the system can produce output to that environment.

• Introduction of Statecharts as an appropriate formalism
to model a reactive system’s behaviour using a discrete-
event abstraction.

• Introduction of the running example of the tutorial: a
traffic light. This example is basic, but has all essential
complexity: it is timed, its lights have to switch au-
tonomously, and it is reactive, since its normal execution
can be interrupted by a policeman.

• Throughout the tutorial, a workflow for designing, testing,
and deploying systems using Statecharts is presented:

1) First, a set of requirements are gathered: these are
properties the system’s behaviour needs to satisfy,
and are typically described in text.

2) Then, an initial design is created as a Statecharts
model. The model implements (part of) the system’s
specification.

3) The model needs to be verified (i.e., we need to
check whether its behavioural properties are satis-
fied). To do this, the model can be simulated (in
which the user defines a simulation scenario and
checks the outcome of the simulation manually) or
it can be tested (in which the user defines a number
of test cases, which consist of a set of timed inputs
that are supplied to the model, and an automatic
checker or “oracle” that verifies whether the test
succeeds). If a simulation or test results in a failure
(i.e., one of the system’s properties is not satisfied),
the system’s model needs to be revised.

4) When the system’s design has gone through several
simulation and testing phases, and its behaviour is
properly verified, code can be generated to deploy
it.

• With the workflow in mind, an explanation follows of the
basic building blocks of Statecharts: states and transitions
(which are triggered by events and optionally have a
constraint that needs to be satisfied).

• Progressively introduce new elements of the Statecharts
language: hierarchy, orthogonality, and history. For each
concept, both the syntax and the semantics of the con-
cept is explained and applied to the example. And, a
demonstration of each concept (including simulation to
demonstrate semantics) in the Yakindu modelling and
simulation tool.

• Demonstration of the testing of Statecharts models. Since
a test consists of an input event trace, and an “oracle”
which checks the output event trace, a test can be seen
as a timed, reactive system as well. The tests in this
tutorial, therefore, are modelled with Statecharts as well.
They can either be modelled as three communicating

Statecharts (the input Statechart, the model under test, and
the oracle), or in a single Statechart model in orthogonal
components.

• Demonstration of code generation (to Java). For this, the
code generation capabilities of the Yakindu tool are used.
A generic visualization for the traffic light example is
built, with which the generated code from the behavioural
model communicates through the interface of the model
(input/output events).

REQUIRED INFRASTRUCTURE

A data projector is required.

SAMPLE SLIDES

A number sample slides of the previous versions of the
tutorial are attached.

REFERENCES

[1] S. Van Mierlo, Y. Van Tendeloo, B. Meyers, J. Exelmans, and
H. Vangheluwe, “SCCD: SCXML extended with class diagrams,” in 3rd
Workshop on Engineering Interactive Systems with SCXML, part of EICS
2016, 2016.

[2] D. Harel, “Statecharts: a visual formalism for complex systems,” Science
of Computer Programming, vol. 8, no. 3, pp. 231–274, June 1987.

[3] ——, “On visual formalisms,” Commun. ACM, vol. 31, no. 5, pp.
514–530, May 1988. [Online]. Available: http://doi.acm.org/10.1145/
42411.42414

[4] D. Harel and A. Naamad, “The STATEMATE Semantics of Statecharts,”
ACM Trans. Softw. Eng. Methodol., vol. 5, no. 4, pp. 293–333, oct 1996.
[Online]. Available: http://doi.acm.org/10.1145/235321.235322

[5] D. Harel and H. Kugler, Integration of Software Specification Techniques
for Applications in Engineering: Priority Program SoftSpez of the Ger-
man Research Foundation (DFG), Final Report. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2004, ch. The Rhapsody Semantics of Stat-
echarts (or, On the Executable Core of the UML), pp. 325–354.

http://doi.acm.org/10.1145/42411.42414
http://doi.acm.org/10.1145/42411.42414
http://doi.acm.org/10.1145/235321.235322

	References

