
DEVS Modelling and Simulation

Yentl Van Tendeloo Hans Vangheluwe

PRESENTERS

YENTL VAN TENDELOO is a PhD student at the

University of Antwerp (Belgium). He is a member of the

Modelling, Simulation and Design (MSDL) research lab. In

his Master’s thesis, he worked on MDSL’s PythonPDEVS

simulator, a parallel and distributed simulator for Classic

DEVS, Parallel DEVS, and Dynamic Structure DEVS with

support for computational resource usage models. The topic

of his PhD is the conceptualization and development of

a new meta-modelling framework and model management

system called the Modelverse. His e-mail address is

Yentl.VanTendeloo@uantwerpen.be.

HANS VANGHELUWE is a Professor at the University of

Antwerp (Belgium), an Adjunct Professor at McGill Univer-

sity (Canada) and an Adjunct Professor at the National Univer-

sity of Defense Technology (NUDT) in Changsha, China. He

heads the Modelling, Simulation and Design (MSDL) research

lab. He has a long-standing interest in the DEVS formalism

and is a contributer to the DEVS community of fundamental

and technical research results. In a variety of projects, often

with industrial partners, he develops and applies the model-

based theory and techniques of Multi-Paradigm Modelling

(MPM). His current interests are in domain-specific mod-

elling and simulation, including the development of graphical

user interfaces for multiple platforms. His e-mail address is

Hans.Vangheluwe@uantwerpen.be.

ABSTRACT

DEVS is a popular formalism for modelling complex

dynamic systems using a discrete-event abstraction. At this

abstraction level, a timed sequence of pertinent “events” input

to a system (or internal, in the case of timeouts) cause

instantaneous changes to the state of the system. Due to its

rigorous formal definition, and its support for modular compo-

sition, several advantages are achieved: 1) it is an appropriate

formalisms to model (software) architectures with a precise

behavioural description, granting performance analysis, real-

time execution, and interoperation with actual systems; 2) it is

a “simulation assembly language” to which other simulation

languages can be mapped, granting formalism coupling at the

DEVS level; and 3) it is a hierarchical framework for co-

simulation or orchestration of discrete-event simulators. This

tutorial introduces the Classic DEVS formalism in a bottom-

up fashion, using a simple traffic light example. The syntax

and operational semantics of Atomic (behavioural) models are

introduced first, after which Coupled (structural) models are

introduced. We continue to actual applications of DEVS, for

example in performance analysis of queueing systems. All

examples are presented with the tool PythonPDEVS, though

this introduction is equally applicable to other DEVS tools.

KEYWORDS

Simulation, discrete event, semantic domain, performance

analysis, orchestration, DEVS

LENGTH

The proposed length of the tutorial is three hours.

LEVEL OF THE TUTORIAL

Introductory. No knowledge of simulation or DEVS is

required.

TARGET AUDIENCE

Modellers with an interest in (discrete-event) simulation and

performance analysis.

NOVELTY

This tutorial has previously been given at other conferences.

At the Spring Simulation Multi-Conference (SpringSim)1,

this tutorial was given in 2016 and 2017. Due to the success

of this tutorial, an extended tutorial (adding an advanced part)

is scheduled for the 2018 edition of this conference. The

SpringSim version of the tutorial handled a minor variation of

the formalism, which was more appropriate to the target audi-

ence (Parallel DEVS instead of Classic DEVS). Additionally, a

different viewpoint was taken to motivate the tutorial, as most

attendees of this conference are already somewhat familiar

with the DEVS formalism and its simulators. For MoDELS, a

more elaborate motivation will be given for the use of DEVS

in the context of Model-Driven Engineering, as well as more

focus on its place in the modelling process.

At the Winter Simulation Conference (WSC)2, this tutorial

was given in 2017. This version of the tutorial was again tar-

geted towards simulation practitioners, which will be different

for the MoDELS tutorial.

1http://scs.org/springsim
2http://meetings2.informs.org/wordpress/wsc2017/

Yentl.VanTendeloo@uantwerpen.be
Hans.Vangheluwe@uantwerpen.be
http://scs.org/springsim
http://meetings2.informs.org/wordpress/wsc2017/

DESCRIPTION OF THE TUTORIAL AND INTENDED OUTLINE

• Introduction to Modelling and Simulation, with a focus

on different abstractions (e.g., discrete event, discrete

time), different modes of execution (e.g., as fast as

possible, realtime).

• Motivate the use of DEVS as a discrete event formalism.

In the context of MoDELS, three viewpoints are taken to

highlight its potential use:

1) DEVS is an appropriate formalism to model (soft-

ware) architectures with a precise behavioural de-

scription. Thanks to DEVS, we achieve several ben-

efits. First, performance analysis becomes possible

with regard to constrained resources (e.g., time or

memory). This is often faster than actual execution,

is guaranteed to be deterministic, and allows for

what-if analysis. Second, the model can be simu-

lated in real-time, thereby effectively executing the

real application. Third, thanks to its modularity,

it is possible to transparently replace parts of the

simulation with the actual system that was being

modeled. As the same model can be used for these

three applications, this increases consistency.

2) DEVS can be used as a semantic domain for the

meaningful combination of different formalisms if

the goal is simulation. DEVS has been identified as

a “simulation assembly language” to which other

simulation languages can be mapped. Thanks to the

modularity of DEVS, these DEVS models originat-

ing from different domain-specific models can then

be coupled at the level of DEVS.

3) DEVS can be used as a hierarchical framework

for co-simulation or orchestration of discrete-event

simulators.

• Introduction to DEVS as a discrete event formalism and

our simulator. While our tutorial uses PythonPDEVS,

all concepts are tool-independent and can be applied in

different DEVS modelling and simulation tools.

• Introduction of the running example: a simple traffic

light that can be interrupted by a policeman. Throughout

this tutorial, this model is incrementally constructed,

highlighting the different aspects of DEVS.

• Atomic DEVS models are the behavioural atomic blocks

of a DEVS model. We start from an autonomous traffic

light, which we subsequently extend with input/output

events, and later with external event processing. Each

increment to the traffic light example is accompanied by

additional elements of the atomic DEVS specification,

an intuitive description of the semantics, and a hand-

on execution of the model using PythonPDEVS. The

complete formal specification is as follows:

AM = 〈X, Y, S, qinit, δint, δext, λ, ta〉

X set of input events

Y set of output events

S set of sequential states

qinit ∈ Q initial total state

Q = {(s, e)|s ∈ S, 0 ≤ e ≤ ta(s)} set of total states

δint : S → S internal transition function

δext : Q × X → S external transition function

λ : S → Y ∪ {φ} output function

ta : S → R
+

0,+∞ time advance

• Coupled DEVS models as the structuring concept of

DEVS. We create a traffic light system, which combines

both a traffic light and a police, which are coupled

together. The various aspects of the coupled DEVS spec-

ification are incrementally added, focussing on their im-

portance and the offered flexibility. Again, this is coupled

with a hands-on application using PythonPDEVS. The

complete specification of a coupled DEVS model is as

follows:

CM = 〈Xself, Yself, D, MS, IS, ZS, select〉

Xself set of input events

Yself set of output events

D set of model instance labels

MS = {AMi|i ∈ D} set of submodels

IS = {Ii|i ∈ D ∪ {self}} topology

Ii = 2D∪{self}\{i} set of influencees’ labels

ZS = {Zi,j |i ∈ D ∪ {self}, j ∈ Ii} translation

Zself,j : Xself → Xj input-to-input translation

Zi,j : Yi → Xj output-to-input translation

Zi,self : Yi → Yself output-to-output translation

select : 2D → D select function

• Semantics of DEVS are described more formally, both

operationally (abstract simulator) and denotationally (clo-

sure under coupling). This is presented at a high level of

abstraction.

• As a more advanced application of DEVS, we present

a simple queueing network both conceptually and in

PythonPDEVS. Constructing this model, attendees be-

come familiar with common DEVS modelling patterns

and learn the caveats of DEVS. This model can be

simulated for efficient performance analysis and what-

if analysis, teaching attendees how to analyze DEVS

simulation results.

• If sufficient time remains, pointers are given on DEVS

variants (Parallel DEVS, Dynamic Structure DEVS, Cell

DEVS), tool support (adevs, vle, X-S-Y, . . .), and so on.

REQUIRED INFRASTRUCTURE

Only a data projector is required.

SAMPLE SLIDES

Some sample slides of the previous versions of the presen-

tation are attached.

Vangheluwe, Hans. DEVS as a common denominator for multi-formalism hybrid systems modelling.

In proceedings of the International Symposium on Computer-Aided Control System Design, pp. 129-134. 2000.

Simulation

Experiment

ௗݕ݈ܽ݁݀ = Ͳݕ݈ܽ݁݀ݏ௬௪ = ݕ݈ܽ݁݀ݏ͵ = ͷݍݏ௧,ℎ௧ଵ = ,݊݁݁ݎ݃ Ͳݍ௧,ଵ = ሺ݈݅݀݁, ʹͺͲሻܿ݀݊௧𝑎௧ = ሺݐ௦ ௗݐௗሻݐ = ʹͶℎ

Trace

Model

Solver

Model

Simulator

Initialization of Initial State

S

t

red

yellow

greenܽݐሺݏሻ݁ 𝜎

,ݏ Ͳ ௧ݍ = ,ݏ ݁ ,ݏ ܽݐ ݏ

𝑆 : set of sequential states𝑆 = {red, yellow, green}𝛿௧ : 𝑆 → 𝑆𝛿௧ = {red → green,

green → yellow,

yellow → red}ܽݐ : S → ℝ,+∞+ܽݐ = {red → ,ௗݕ݈ܽ݁݀

green → ,ݕ݈ܽ݁݀

yellow → {௬௪ݕ݈ܽ݁݀

𝑀 = , , ,𝑆 𝛿௧ ௧ݍܽݐ

௧ݍ : 𝑄 – set of total states𝑄 = ,ݏ ݁ ݏ א 𝑆, Ͳ ݁ ௧ݍሻݏሺܽݐ = (green, 0)

Autonomous (no output)

݁ = Ͳݏ

red݈݀݁ܽݕௗ

yellow݈݀݁ܽݕ௬௪

green݈݀݁ܽݕ

!show_red

!show_yellow

!show_green

𝑆 = {red, yellow, green}𝛿௧ = { red→ green,

green→ yellow,

yellow→ red}ݍ௧ = (green, 0)ܽݐ = {red→ ,ௗݕ݈ܽ݁݀
green→ ,ݕ݈ܽ݁݀

yellow→ ܻ{௬௪ݕ݈ܽ݁݀ : set of output eventsܻ = {“show_red”, “show_green”, “show_yellow”}𝜆 : 𝑆 → ܻ ∪ {𝜙}𝜆 = { green→ “show_yellow”,
yellow→ “show_red”,
red→ “show_green”}

𝑀 = , 𝑆, ,௧ݍ 𝛿௧, , ܻܽݐ 𝜆Autonomous (with output)

݁ = Ͳݏ

red݈݀݁ܽݕௗ

yellow݈݀݁ܽݕ௬௪

green݈݀݁ܽݕ

𝑆 = {red, yellow, green}ݍ௧ = (green, 0)𝛿௧ = { red→ green,

green→ yellow,

yellow→ red}ܽݐ = {red→ ,ௗݕ݈ܽ݁݀

green→ ,ݕ݈ܽ݁݀

yellow→ ܻ{௬௪ݕ݈ܽ݁݀ = {“show_red”,
“show_green”,
“show_yellow”}𝜆 = {green→ “show_yellow”,
yellow→ “show_red”,
red→ “show_green”}

time = 0

current_state = initial_state

last_time = -initial_elapsed

while not termination_condition():

time = last_time + ta(current_state)

output(𝜆(current_state))

current_state = 𝛿௧(current_state)

last_time = time

Operational Semantics

from pypdevs.DEVS import *

class TrafficLightWithOutput(AtomicDEVS):

def __init__(self, …):
AtomicDEVS.__init__(self, “light”)
self.observe = self.addOutPort(“observer”)
…

…

def outputFnc(self):

state = self.state

if state == “red”:
return {self.observe: “show_green”}

elif state == “yellow”:
return {self.observe: “show_red”}

elif state == “green”:
return {self.observe: “show_yellow”}

atomic_out.pyConcrete Syntax

Abstract Syntax

!show_red

!show_yellow

?toManual

?toManual

?toManual

?toAuto

ܻ = {“show_red”, “show_green”, “show_yellow”}𝑆 = {red, yellow, green, manual}ݍ௧ = (green, 0)𝛿௧ = {red→ green,

green→ yellow,

yellow→ red}𝜆 = {green→ “show_yellow”,
yellow→ “show_red”,
red→ “show_green”}ܽݐ = {red→ ,ௗݕ݈ܽ݁݀
green→ ,ݕ݈ܽ݁݀

yellow→ ,௬௪ݕ݈ܽ݁݀

manual→ +∞}

𝛿௫௧ : Q × ܺ → 𝑆𝑄 = ,ݏ ݁ ݏ א 𝑆, Ͳ ݁ ሻ𝛿௫௧ݏሺܽݐ = {((*, *), “toManual”)→ “manual”,
((“manual”, *), “toAuto”)→ “red”}

ܺ : set of input eventsܺ = {“toAuto”, “toManual”}

ܺ 𝛿௫௧𝑀 = , ܻ, 𝑆, ,௧ݍ 𝛿௧, , 𝜆, Reactiveܽݐ

݁ = Ͳݏ

red݈݀݁ܽݕௗ

yellow݈݀݁ܽݕ௬௪

green݈݀݁ܽݕ

manual∞
!show_green

!show_red

!show_yellow

!show_green

?toManual/

!turn_off

?toManual/

!turn_off

?toManual/

!turn_off

?toAuto/

!show_red

݁ = Ͳݏ

X

S

Y

t

t

t

red

manual

green

show_green

toManual

toAuto

yellow

show_red

turn_off

red݈݀݁ܽݕௗ

yellow݈݀݁ܽݕ௬௪

green݈݀݁ܽݕ

manual∞

time = 0

current_state = initial_state

last_time = -initial_elapsed

while not termination_condition():

next_time = last_time + ta(current_state)

if time_next_ev <= next_time:

e = time_next_ev – last_time

time = time_next_ev

current_state = 𝛿௫௧((current_state, e), next_ev)

else:

time = next_time

output(𝜆(current_state))

current_state = 𝛿_𝑖𝑛𝑡(current_state)

last_time = time

!show_red

!show_yellow

!show_green

݁ = Ͳݏ

!show_red

!turn_off

?toAuto
?toManual

?toManual

?toManual

X

S

Y

t

t

t

red

manual

green

show_green

toManual

toAuto

going_auto

show_red

turn_off

going_manual

red݈݀݁ܽݕௗ

yellow݈݀݁ܽݕ௬௪

green݈݀݁ܽݕ

manual∞

going_manualͲݏ

going_autoͲݏ

S

t

ሺݏ , Ͳሻ
ܽݐ ݏ

ሺ𝛿௫௧ ݏ , ݁ , ݔ , Ͳሻ

ሺ𝛿௧ሺݏሻ, Ͳሻ

𝛿௫௧

𝛿௧output 𝜆ሺݏሻ

ݐ ݐ + ݁ ݐ + ܽݐ ݏ

݁

ܥ = ܺ௦ , ௦ܻ , ,𝑀𝑆,ܦ 𝐼𝑆, ܼ𝑆, ݐ݈ܿ݁݁ݏ
𝐼𝑆 = 𝐼 ݅ א ܦ ∪ ∀݂݈݁ݏ ݅ א ܦ ∪ ݂݈݁ݏ ∶ 𝐼 ⊆ ܦ ∪ ∀݂݈݁ݏ ݅ א ܦ ∪ ݂݈݁ݏ ∶ ݅ ב 𝐼ܼ𝑆 = ܼ, ݅ א ܦ ∪ ݂݈݁ݏ , ݆ א 𝐼ܼ௦, ∶ ܺ௦ → ܺ , ∀ ݆ א ,௦ܼܦ ∶ ܻ → ௦ܻ , ∀ ݅ א ,ܼܦ ∶ ܻ → ܺ , ∀ ݅, ݆ א ݐ݈ܿ݁݁ݏܦ ∶ ʹ𝐷 → ∀ܦ ܧ ⊆ ,ܦ ܧ ≠ ∅: ݐ݈ܿ݁݁ݏ ܧ א ܧ

𝑀𝑆 = 𝑀 ݅ א 𝑀ܦ = ܺ , ܻ , 𝑆 , ௧,ݍ , 𝛿௧, , 𝛿௫௧, , 𝜆 , ܽݐ , ∀ ݅ א ܦ 𝑴𝒍𝟏࢚ࢎࢍ𝑴𝒍𝟏 ࢌ𝒍ࢋ࢙

take_break toAuto

go_to_work toManual

?
𝑀ܥ = ܺ௦, ௦ܻ, ,𝑀𝑆,ܦ 𝐼𝑆, ܼ𝑆 ݊݁ݐݐ݈݂ܽ 𝑀ܥ = ܺ, ܻ, 𝑆, ,௧ݍ 𝛿௧, 𝛿௫௧, 𝜆, ܽݐ

flatten

(done, t)

(*, t)

(y, t)

(x, t)(*, t)

(done, t) (done, t)

Root coordinator

Coordinator

SimulatorSimulator

Coupled DEVS

Atomic DEVS Atomic DEVS

(i, t)

(done, t)

(done, t)

(i, t)

(done, t)

DEVS Semantics

Atomic DEVS

Coupled DEVS

Operational

Semantics

Denotational

Semantics

Abstract

Simulator
[1]

Hierarchical

Simulator

Closure under

Coupling

[1] Ashvin Radiya and Robert G. Sargent. A logic-based foundation of discrete event modeling

and simulation. ACM Transactions on Modeling and Computer Simulation, 1(1):3-51, 1994.

