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Abstract A large number of model transformation languages and tools have
emerged in the past decade. A transformation engineer is thus left with too
many choices for the language he shall use to perform a specific transformation
task. Furthermore, it is currently not possible to combine or re-use transfor-
mations implemented in different languages. We therefore propose T-Core, a
framework where primitive transformation operators can be combined to de-
fine and encapsulate re-usable model transformation idioms. In this context the
transformation engineer is free to use existing transformation building blocks
from an extensible library or define his own transformation units. The pro-
posed primitive transformation operators result from de-construction process
of different existing transformation languages. Re-constructing these languages
offers a common basis to compare the expressiveness, provides a framework
for inter-operating them, and allows the transformation engineer to design
transformations with the most appropriate constructs for his task.

Keywords model transformation · domain-specific model transformation ·
transformation library · re-engineering

1 Introduction

For the past decade, we have witnessed a plethora of different rule-based MTLs
and supporting tools. This sudden overwhelming emergence is the result of
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not yet having “the best fit” language for transforming models. QVT [23] and
ATL [26] are examples that attempt to reach this goal. The problem with these
candidates is that they are general-purpose transformation languages that of-
ten encumber the developer with unneeded features. This adds complexity to
the design the transformation which may lead to design errors and even reduce
productivity [27]. There is thus a need to have model transformation languages
(MTLs) that are specific to the problem to solve. Other more focused MTLs
are dedicated to implement specific transformation solution [5] and some even
restrict themselves to specific domains of application [9].

Many MTLs (FUJABA [17], GReAT [1], ProGReS [47], VIATRA [57],
VMTS [36], etc.) have been de facto used in scenarios they were originally not
intended for. In order to resolve the issues encountered, more features have
been added to the languages to widen their scope. They cover all (or a subset
of) the well-known essential features of model transformation [13,39,52]. For
such languages, the semantics (and hence implementation) of a transformation
rule consists of the appropriate combination of building blocks implementing
primitive operations such as matching, rewriting, and often a validation of
consistent application of the rule. The above-mentioned essential features of
transformation languages are achieved by implicitly or explicitly specifying
“rule scheduling”. Languages include constructs to specify the order in which
rules are applied, often in the form of a control flow language.

The diversity of transformation languages makes it hard to (1) easily de-
sign complex transformations, (2) compare their expressiveness, and (3) pro-
vide a framework for interoperability i.e., meaningfully combining transfor-
mation units specified in different transformation languages. One approach is
to express model transformation at the level of primitive building blocks. De-
constructing and then re-constructing MTLs by means of a small set of most
primitive constructs offers a common basis to compare the expressiveness of
transformation languages. It may also help in the discovery of novel, possibly
domain-specific, model transformation constructs by combining the building
blocks in new ways. Furthermore, it allows implementers to focus on maxi-
mizing the efficiency of the primitives in isolation, leading to more efficient
transformations overall. Lastly, once re-constructed, different transformation
languages can seamlessly inter-operate as they are built on the same primitives.
This use of common primitives in turn allows for global as well as inter-rule
optimization.

The vision behind this article is to provide the tools to develop domain-
specific MTLs as opposed to general-purpose MTLs. In previous work [32,55],
we have illustrated techniques to model the syntax of such languages. The main
contribution of this article is a framework that offers model transformation op-
erators that can be mixed and matched in order to design transformations with
no more expressiveness and computation power than needed by the user. Such
primitives give a uniform semantics in terms of the computation of the trans-
formation as well as the expressiveness of its constructs i.e., the transformation

units. Transformation units, as first introduced in [28], are meant to “divide a
large set of transformation rules into smaller ones in a structured and system-
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Model Transformation Paradigm Object-Oriented Paradigm

Transformation Package
Rule Class

Rule Primitive Method
CRUD operation Operation on variables

Table 1 Analogy of the abstraction hierarchy in model transformation and object-oriented
paradigms.

atic way”. Typical transformation units are rules, queries, their composition,
and helper functions that are re-usable in different model transformations.

In Section 2 we introduce T-Core, a collection of primitive operators for
MTL. Section 3 addresses performance issues of the main T-Core operators.
Then, in Section 4, we describe a framework for engineering a product line
of problem-specific MTLs based on T-Core. As it is unfeasible to validate
the completeness of the collection, we show by example how transformation
entities, common as well as more esoteric, can be re-constructed using T-Core.
Section 5 outlines a complete application of the proposed framework by entirely
re-engineering an existing MTL. Finally Section 6 discusses related work and
we conclude in Section 7.

2 A Minimal Transformation Core

Model transformation language primitives can be defined at different levels of
granularity. The decomposition process is similar to what is found in object-
oriented languages as depicted in Table 1. At the highest level, the trans-
formation can be decomposed into sub-transformations1, each dedicated to a
specific task in order to accomplish a single goal (simulation, code generation,
synchronization, etc). Following the analogy, a transformation corresponds to
a package in object-oriented languages. Defining MTL primitives at this level
means that transformations are treated as black-boxes, which is not the in-
tention. Thus at a lower level, a (sub-)transformation can be decomposed into
individual rules. Rules are the units of a transformation like a class is to a pack-
age. However, setting the rules as primitives would not consider other model
transformation paradigms such as relational or functional. At a coarser level
of abstraction, a transformation encapsulates CRUD operations performed on
a model. However, we believe that these operations should be defined at the
virtual machine level, rather than having a transformation language engineer
combine them, i.e., this is not the optimal level of abstraction. Hence rule
primitives reside somewhere between rule definitions and CRUD operations.
They dictate how a rule operates. As methods define the behavior of a class

1 A sub-transformation can be considered as a transformation on its own. But when
designed modularly, composing these transformations can lead to a more complex transfor-
mation.
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and operations on objects, rule primitives define the behavior of a rule oper-
ating on the model. At a more fine-grained level, a rule primitive encapsulates
CRUD operations performed on the model, such as common transformation
virtual machines [3]. This is similar to how methods encapsulate operations
that can be performed on variables (assignment, navigation, iteration, etc).

The proposed decomposition of MTLs therefore focuses on the rule prim-
itives level. In previous work [49], we have compared the features of thirteen
MTLs. One can synthesize the common essential features of model transfor-
mation as follows:

– Pre- and post-condition patterns that allow one to declaratively spec-
ify a rule;

– Matching rule pre-condition patterns in the host model to bind model
elements (a match) that will be modified by the application of a rule;

– Rewriting the host model to satisfy the post-condition of a rule;
– Validation of consistent rule applications to detect conflicts and resolve

them;
– Manipulation of matches to iterate through them and roll-back to

previous match states;
– Control of the flow of rule applications by offering choices and con-

currency;
– Compositionmechanisms to provide structure, re-use, and encapsulation.

Based on the previous observations, we propose here a collection of model
transformation primitives. The class diagram in Fig. 1 presents the module
T-Core (which stands for Transformation Core) encapsulating model trans-
formation primitives. T-Core consists of eight primitive constructs (Primitive

objects): a Matcher, Iterator, Rewriter, Resolver, Rollbacker, Composer, Selector,
and Synchronizer. The first five are RulePrimitive elements and represent the
building blocks of a single transformation unit. T-Core is not restricted to any
form of specification of a transformation unit. In fact, we consider only Pre-

ConditionPatterns and PostConditionPatterns. For example, in rule-based model
transformation, the transformation unit is a rule. The PreConditionPattern de-
termines its applicability: it is usually described with a left-hand side (LHS)
and optional negative application conditions (NACs). The LHS defines the
pattern that must be found in the input model to apply the rule. The NAC
defines a pattern that shall not be present, inhibiting the application of the
rule. It also consists of a PostConditionPattern which imposes a pattern to be
found after the rule was applied: it is usually described with a RHS. RulePrim-

itives are to be distinguished from the ControlPrimitives, which are used in the
design of the rule scheduling part of the transformation language. A meaning-
ful composition of all these different constructs in a Composer object allows
modular encapsulation of and communication between Primitive objects.

Primitives exchange three different types of messages: Packet, Cancel, and
Exception. A packet π represents the host model together with sufficient in-
formation for inter- and intra-rule processing of the matches. π thus holds
the current model (a typed, attributed graph in our case) graph, the matchSet,
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Fig. 1 The T-Core module.

and a reference to the current PreConditionPattern identifying a MatchSet. A
MatchSet refers to a condition pattern and contains the actual matches as well
as a reference to the matchToRewrite. Note that each MatchSet of a packet has a
unique condition, used for identifying the set of matches. A Match consists of a
sub-graph of the graph in π where each element is bound to an element in graph.
Some elements (Nodes) of the match may be labelled as pivots, which allows
certain elements of the model to be identified and passed between rules. A
cancel message ϕ is meant to cancel the activity of an active primitive element
(especially used in the presence of a Selector). Finally, specific exceptions χ

can be explicitly raised, carrying along the currently processed packet π. More
details on how transformation exceptions are handled can be found in [51].

All the primitive constructs can receive packets by invoking either their
packetIn, nextIn, successIn, or failIn methods. The result of calling one of
these methods sets the primitive in success or failure mode as recorded by the
isSuccess attribute. Cancel messages are received from the cancelIn method.
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2.1 The Primitives

Here we describe in detail the behaviour of the different methods supported
by each of the eight primitive elements.

2.1.1 Matcher

Algorithm 1 Matcher.packetIn(π)

1: M ← match(π.graph, condition, π.globalPivots)
2: if ∃ 〈condition,M ′〉 ∈ π.matchSets then

3: M ′ ←M ′ ∪M

4: else

5: add 〈condition,M〉 to π.matchSets

6: π.current ← condition

7: isSuccess ←M 6= ∅
8: return π

The Matcher looks for an occurrence of its pre-condition pattern condition

in the graph of the input packet π. The details of the match procedure is given
in Algorithm 12 in Section 3.3. The transformation modeler may optimize the
matching by setting the max attribute to finding one, all, or a maximum num-
ber of matches when he knows a priori that this many matches of the matcher
will be processed in the overall transformation. The matching also considers
the pivot mapping2 (if present) of the current match of π. After matching the
graph, the Matcher stores the different matches in the packet as described in
Algorithm 1. In this notation, MS is a MatchSet object structure, M is the set
of Match instances it holds and m is a single Match object. Some implemen-
tations may, for example, parametrize the Matcher by the condition pattern
or embed it directly in the Matcher. The transformation units (e.g., rules)
may be compiled in pre/post-condition patterns or interpreted, but this is a
tool implementation issue which is not discussed here. The complexity of the
Matcher depends on that of the matching algorithm in line 1 which we discuss
in the next section.

2.1.2 Rewriter

As described in Algorithm 2, the Rewriter applies the required transforma-
tion according to the post-condition pattern condition on the match specified
in the packet it receives from its packetIn method. That match is consumed
by the Rewriter: no other operation can be further applied on it. Some valida-
tions are made in the Rewriter to verify, for example, that π.current.condition
= condition.pre or that no error occurred during the transformation. In our ap-
proach, a modification (update or delete) of an element in {m ∈ M |
〈condition.pre,M〉 ∈ π.matchSets} is automatically propagated to all the

2 The bound pivot nodes are stored in globalPivots. But the matching may also assign
pivots (useful for nested rules, as discussed later) and stores them in localPivots.
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Algorithm 2 Rewriter.packetIn(π)

1: if π is invalid then

2: isSuccess ← false

3: exception ← χ(π)
4: return π

5: MS ← 〈condition.pre,M〉 ∈ π.matchSets

6: apply transformation on MS.matchToRewrite

7: if transformation failed then

8: isSuccess ← false

9: exception ← χ(π)
10: return π

11: set all modified nodes in MS.matchToRewrite to dirty

12: remove MS.matchToRewrite from MS.matches

13: isSuccess ← true

14: return π

other matches, when applicable. The complexity of the Rewriter depends on
that of the rewriting algorithm in line 6 which we discuss in the next section.

2.1.3 Iterator

The Iterator chooses a match among the set of matches of the current condition
of the packet it receives from its packetIn method, as described in Algorithm
3. The match is chosen randomly in a Monte-Carlo sense, repeatable using
sampling from a uniform distribution to provide a reproducible, fair sampling.
When its nextIn method is called, the Iterator chooses another match as long
as the maximum number of iterations maxIterations (possibly infinite) is not
yet reached, as described in Algorithm 4. In the case of multiple occurrences
of a MatchSet identified by π.current, the Iterator selects the last MatchSet.
The complexity of the Iterator is constant with an appropriate pseudo-random
number generator for choosing a match in line 3.

Algorithm 3 Iterator.packetIn(π)

1: if 〈π.current,M〉 ∈ π.matchSets then

2: MS ← 〈π.current,M〉
3: choose m ∈MS.matches

4: MS.matchToRewrite ← m

5: iterations ← 1
6: isSuccess ← true

7: return π

8: else

9: isSuccess ← false

10: return π

Algorithm 4 Iterator.nextIn(π)

1: if 〈π.current,M〉 ∈ π.matchSets and

iterations < maxIterations then

2: MS ← 〈π.current,M〉
3: choose m ∈MS.matches

4: MS.matchToRewrite ← m

5: iterations ← iterations + 1
6: isSuccess ← true

7: return π

8: else

9: isSuccess ← false

10: return π

2.1.4 Resolver

The Resolver resolves a potential conflict between matches and rewritings
as described in Algorithm 5. For the moment, the Resolver detects conflicts
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Algorithm 5 Resolver.packetIn(π)

for all condition c ∈ {c| 〈c,M〉 ∈ π.matchSets} do
if externalMatchesOnly and c = π.current then

continue

for all match m ∈M do

if m has a dirty node then

if not customResolution(π) then

if not defaultResolution(π) then

isSuccess ← false

exception ← χ(π)
return π

isSuccess ← true

return π

in a simple conservative way: it prohibits any change to other matches in the
packet (check for dirty nodes). However, it does not verify if a modified match
is still valid with respect to its pre-condition pattern. The externalMatchesOnly

attribute specifies whether the conflict detection should also consider matches
from its match set identified by π.current or not. In the case of conflict, a default
resolution function is provided but the user may also override it. Although the
conflict detection is conservative, the customResolution function may discard
the conflict if, for example, NACs are not enabled in other matches. That is,
the Resolver will detect trivial conflicts, but the transformation engineer is
empowered to define the conflicts that may occur in his application domain.
The complexity of the Resolver depends on the implementation of the custom
resolution function as well as the number of match sets and matches. Note
that the complexity of the default resolution function is linear in terms of the
size of the match.

2.1.5 Rollbacker

Algorithm 6 Rollbacker.packetIn(π)

establish(π)

if 〈π.current,M〉 ∈ π.matchSets then

maxIterations ← |M |
else

maxIterations ← max

iterations ← 1
isSuccess ← true

return π

Algorithm 7 Rollbacker.nextIn(π)

π̂ ← restore()

iterations ← iterations + 1
if iterations < maxIterations then

isSuccess ← true

else

discard()

isSuccess ← false

return π̂

The Rollbacker provides transactional behavior with back-tracking capabil-
ities. Consequently, it is used as a recovery point that allows backward recovery
of packets, e.g., by means of checkpointing as described in Algorithms 6 and
7. The packetIn method establishes a checkpoint of the received packet. This is
done by making a copy π̂ of the input packet π and pushing it on a temporary
stack. It also sets the maximum number of iterations to the total number of
matches found for the current condition. The nextIn method restores the last
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checkpoint to roll-back the packet to its previous state π̂. If there are no more
matches left in M , it also removes the previous checkpoint established. The
transactional operations of the Rollbacker have a linear worst case complexity
in terms of the size of the packet.

2.1.6 Selector

Algorithm 8 Selector.select()

1: if success 6= ∅ then
2: π̂ ← choose from success

3: isSuccess ← true

4: else if fail 6= ∅ then
5: π̂ ← choose from fail

6: isSuccess ← false

7: else

8: π̂ ← πφ

9: isSuccess ← false

10: exception ← χ(πφ)
11: success ← ∅
12: fail ← ∅
13: return π̂

Algorithm 9 Synchronizer.merge()

1: if |success| = threads then

2: if customMerge() then

3: π̂ ← the merged packet in success

4: isSuccess ← true

5: success ← ∅
6: fail ← ∅
7: return π̂

8: else if defaultMerge() then

9: π̂ ← the merged packet in success

10: isSuccess ← true

11: success ← ∅
12: fail ← ∅
13: return π̂

14: else

15: isSuccess ← false

16: exception ← χ(πφ)
17: return πφ

18: else if |success|+|fail| = threads then

19: π̂ ← choose from fail

20: isSuccess ← false

21: return π̂

22: else

23: isSuccess ← false

24: exception ← χ(πφ)
25: return πφ

The Selector is used when a choice needs to be made between multiple
packets processed concurrently by different constructs. It allows exactly one of
them to be processed further. When its successIn (or failIn) method is called,
the received packet is stored in its success (or fail) collection, respectively.
Note that, unlike the previously described methods, it is only when the select

method in Algorithm 8 is called that a packet is returned, chosen from success.
The selection is random in the same way as in the Iterator. However, if success

is empty, the returned packet is randomly chosen from fail. Note that if both
success and fail are empty, select throws an exception with an empty packet
πφ. When the cancel method is invoked, the two collections are cleared and a
cancel message ϕ is returned where the exclusions set consists of the singleton
π.current (meaning that further operations of the chosen condition should not
be canceled). The complexity of the Selector is constant with an appropriate
pseudo-random number generator for choosing a packet in lines 2 and 5.
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2.1.7 Synchronizer

The Synchronizer is used when multiple packets processed in parallel need
to be synchronized. It is parametrized by the number of threads to synchro-
nize. This number is known at design-time. Its successIn and failIn methods
behave exactly like those of the Selector. The Synchronizer is in success mode
only if all threads have terminated by never invoking failIn. The merge method
“merges” the packets in success, as described in Algorithm 9. A trivial default
merge function is provided by unifying and “gluing” the set of packets. Nev-
ertheless, it first conservatively verifies the validity of the received packets by
prohibiting overlapping matches between them. If it fails, the user can specify
a custom merge function. This avoids the need for static parallel independence
detection. Instead it is done at run-time and the transformation modeler must
explicitly describe the handler. One pragmatic use of that solution is, for in-
stance, to let the transformation run once to detect the possible conflicts and
then the transformation modeler may handle these cases by modifying the
transformation model. The complexity of the Synchronizer depends on the im-
plementation of the custom merge function. Note that the complexity of the
default merge function is linear in terms of the total number of graph nodes.

2.1.8 Composer

The Composer serves as a modular encapsulation interface of the elements
in its primitives list. When one of its packetIn or nextIn methods is invoked,
it is up to the user to manage subsequent method invocations to its primi-
tives. Nevertheless, when the cancelIn method is called, the Composer invokes
the cancelIn method of all its sub-primitives. This cancels the current action of
the primitive object by resetting its state to its initial state. Cancelling hap-
pens only if a primitive is actively processing a packet π such that the current
condition of π is not in ϕ.exclusions, where ϕ is the received cancel message.
In the case of a Matcher, since the current condition of the packet may not
already be set, the cancelIn also verifies that the condition of the Matcher is not
in the exclusions list. The interruption of activity can, for instance, be imple-
mented as a pre-emptive asynchronous method call of cancelIn. Furthermore,
resetting the dirty flag of modified nodes is done in the Composer by calling
the clean method of a packet. Also, resetting the success and fail collections
of the control primitives should be done by calling their reset method at the
appropriate time.

2.2 Rationale

In the de-construction process of transformation languages into a collection of
primitives, questions like “up to what level?” or “what to include and what to
exclude?” arise. The proposed T-Core module answers these questions in the
following way.
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In a MTL, the smallest transformation unit is traditionally the rule. A
rule is a complex structure with a declarative part and an operational part.
The declarative part of a rule consists of the specification of the rule (e.g., LH-
S/RHS and optionally NAC in graph transformation rules). However, T-Core is
not restricted to any form of specification be it rule-based, constraint-based, or
function-based. In fact, some languages require units with only a pre-condition
to satisfy, while others with a pre- and a post-condition. Some even allow ar-
bitrary permutations of repetitions of the two. In T-Core, either a PreCondi-

tionPattern or both a Pre- and a PostConditionPattern must be specified. For
example, a graph transformation rule can be represented in T-Core as a pair
of a pre- and a post-condition pattern, where the latter has a reference to the
former to satisfy the semantics of the interface K (in the L ← K → R

algebraic graph transformation rules) and to be able to perform the transfor-
mation. Transformation languages where rules are expressed bidirectionally or
as functions are supported in T-Core as long as they can be represented as pre-
and post-condition patterns.

The operational part of a rule describes how it executes. This operation
is often encapsulated in the form of an algorithm (with possibly local opti-
mizations). Nevertheless, it always consists of a matching phase, i.e., finding
instances of the model that satisfy the pre-condition and of a transformation

phase, i.e., applying the rule such that the resulting model satisfies the post-
condition. T-Core distinguishes these two phases by offering a Matcher and a
Rewriter as primitives. Consequently, the Matcher’s condition only consists of
a pre-condition pattern and the Rewriter then needs a post-condition pattern
that can access the pre-condition pattern to perform the rewrite. Combinations
of Matchers and Rewriters in sequence can then represent a sequence of simple
graph transformation rules: match-rewrite-match-rewrite. Moreover, because
of the separation of these two phases, more general and complex transforma-
tion units may be built, such as: match-match-match or match-match-rewrite-

rewrite. The former is a query where each Matcher filters the conditions of the
query. The latter is a nesting of transformation rules. In this case, however,
overlapping matches between different Matchers and then rewrites on the over-
lapping elements may lead to inconsistent transformations or even nonsense.
This is why a Resolver can be used from T-Core to safely allow match-rewrite

combinations.

The data structure exchanged between T-Core RulePrimitives in the form
of packets contains sufficient information for each primitive to process it as de-
scribed in the various algorithms. The Match allows one to refer to all model
elements that satisfy a pre-condition pattern. The pivot mappings allow el-
ements of certain matches to be bound to elements of previously matched
elements (it is equivalent to passing parameters between rules). The MatchSet

allows delaying the rewriting phase instead of having to rewrite directly after
matching.

Packets conceptually carry the complete model (optimized implementation
may relax this) which allows concurrent execution of transformations. The
Selector and the Synchronizer both permit one to join branches or threads
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of concurrent transformations. Also, having separated the matching from the
rewriting enables one to manage the matches and the results of a rewrite by
further operators. Advanced features such as iteration over multiple matches
or back-tracking to a previous state in the transformation are also supported
in T-Core. If the Rollbacker is used in combination with the Iterator, then the
overall behavior can handle back-tracking for cases where multiple matches
are found.

Since T-Core is a low-level collection of model transformation primitives,
combining its primitives to achieve relevant and useful transformations may
involve a large number of these primitive operators. Therefore, it is necessary
to provide a “grouping” mechanism. The Composer allows one to modularly
organize T-Core primitives. It serves as an interface to the primitives it en-
capsulates. The Composer is the extension point of T-Core where arbitrary
transformation units can be defined by combining any of the presented prim-
itives via specialization. This then enables scaling of transformations built on
T-Core to large and complex model transformation designs.

T-Core is presented here as an open module which can be extended, through
inheritance for example. One could add other primitive model transformation
building blocks. For instance, a conformance check operator may be useful to
verify if the resulting transformed model still conforms to its meta-model. It
can be interleaved between sequences of rewrites or used at the end of the
overall transformation as suggested in [31]. We believe however that such new
constructs should either be part of the (programming or modeling) language or
the tool in which T-Core is integrated, to keep T-Core as primitive as possible.

2.3 Usage of T-Core

The API of T-Core presented in the previous section offers a common interface
to all primitive transformation operators. Furthermore, the CompositionPrim-

itive can be used to encapsulate the execution of other primitives in order to
provide abstraction. The packetIn method is the entry point of a T-Core trans-
formation. Fig. 2(a) illustrates a typical interaction with a transformation op-
erator. When a CompositionPrimitive gets initially created, it is responsible of
recursively created the instances of its sub-primitives following the composite
design pattern [19]. Its packetIn is invoked with a packet that had previously
been initialized with the input graph of the transformation. Because the opera-
tors support asynchronous execution, the packetIn method returns the resulting
packet after being processed by the corresponding RulePrimitive r. To know
whether r has been successfully applied or not, one should query the isSuccess

property of r. Similarly, if an exception occurred, the exception property of
r will refer to the corresponding detailed error. Therefore it is important to
not forget to set the isSuccess property of a custom Composer in case of a
successful execution so that the invoking context of the transformation can
be aware of that status, as well as any exception that may have occurred. A
similar pattern can be used for the nextIn method.
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:Transformation

:CompositionPrimitive r:RulePrimitive

OPT

<<create>>

<<create>>

p:=Packet(g)

packetIn(p)

isSuccess:=false

packetIn(p)

p1:=return

ALT

[r.exception!=null]

[r.isSuccess==false]

isSuccess:=true

p1

exception:=

r.exception

(a)

:Composer

PAR

r1:RulePrimtive r2:RulePrimtive s:Selector

p1:=packetIn(p)

p2:=packetIn(p)

successIn(p1)

successIn(p2)

p3:=select()

x:=cancel()

reset()

(b)

Fig. 2 Sequence diagrams for using a RulePrimitive in (a) and a ControlPrimitive in (b).

Fig. 2(b) illustrates a typical interaction with a Selector. Recall that control
primitives accumulate packets and can then produce a single packet: they
serve as join points in the transformation. Packets are stored by invoking the
successIn or failIn methods. At the appropriate time, the corresponding join
function (select for the Selector and merge for the Synchronizer) can be invoked
to retrieve a single packet from that operator. In the case of a Selector, a cancel
event may be requested to invoke the cancelIn method of the other primitives
if the suspension of their activity is desired. The reset method shall be invoked
afterwards to clear the lists of packets. As in the previous case, verifying for
success and errors needs to be integrated as well.

T-Core is designed in such a way that the transformation primitives can
be executed independently from one another. To produce a meaningful re-
sult (transformation, query, state exploration, etc.), certain operators should
preferably be applied before others. For example, Fig. 3 illustrates the in-
teraction between T-Core operators to execute a transformation rule. In the
following, we outline good practices for using the T-Core primitive operators:

– A Matcher should always be preceded by an Iterator in order to select a
match found.

– A Rewriter should not be applied before executing the Matcher whose con-
dition is the pre-condition of the Rewriter’s post-condition. Otherwise, the
rewriting phase will not affect the input graph and an exception will be
reported.

– A Roll-backer will typically receive a packetIn message as soon as the en-
closing Composer receives a packet. That way, the original graph will be
checkpointed and may be restored at a later time via the nextIn method.



14 Eugene Syriani et al.

arule:Composer m:Matcher i:Iterator w:Rewriter

<<create>><<create>>

<<create>>

packetIn(p) p:=packetIn(p)

OPT

ALT

isSuccess:=true

p

<<create>>

p2:=packetIn(p)

ALT [i.isSuccess==false]

OPT

p

p3:=packetIn(p)

OPT

p

p

p:Packet

clean()

clean()

clean()

ALT

clean()

exception:=

m.exception

[m.exception!=null]

[i.exception!=null]

[w.exception!=null]

[m.isSuccess==false]

[w.isSuccess==false]

exception:=

i.exception

exception:=

w.exception

Fig. 3 Sequence diagram of a simple rule execution.

– A Resolver should be executed after at least one application of a Rewriter.
That is because conflicts are detected in an optimistic way, i.e., after a
modification of the graph, since the invariant part of the rule is not stored.

3 Implementation of T-Core

We implemented T-Core with a mindset to execute model transformations
on large models efficiently. Therefore we provide an efficient implementation
of the model transformation primitives. The details of the implementation
of the data structures used to represent models to-be-transformed as well as
transformation models are available at [54]. Models are encoded as graphs
implemented with the IGraph library [11]. It also compares the efficiency of
T-Core based transformations with other existing transformation tools. In this
section we focus on implementation of the two core operators: the Matcher and
the Rewriter.

Pattern matching and, in particular the sub-graph homomorphism prob-
lem, is NP-complete [38]. There are however various exponential-time worst
case solutions for which the average-time complexity can be reduced with the
help of heuristics. These approaches can be divided into two major categories:
search plans and constraint satisfaction problems (CSP).
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Search plan techniques [62,20] define the traversal order for the nodes of
the model to check whether the pattern can be matched. This is done by
computing the cost tree of the different search paths and choosing the least
costly one. Complex model-specific optimization steps can be carried out for
generating efficient adaptive search plans [58]. Examples of such heuristics are
the use of typing information with respect to meta-model elements or the use
of cardinality constraints defined in the meta-model.

Graph pattern matching can also be described as a constraint satisfaction
problem [45], where the pre-condition elements are variables, the elements of
the model form the domain and typing, and the links and attribute values
form the set of constraints. These techniques make use of backtracking algo-
rithms [30] for finding a sub-graph of the input graph that is isomorphic3 to
the pre-condition graph. The algorithm explores the search space in a depth-
first order. Well-known algorithms such as Ullmann [56] and VF2 [10] are
some of the most efficient for solving the sub-graph isomorphism problem as a
constraint satisfaction problem. Like in Ullmann’s approach, VF2 constructs
a search-tree traversing the host graph depth-first and backtracks when the
current search-state fails a compatibility test. The algorithm also performs
a pruning of the search space during the matching process. The major differ-
ence between Ullmann and VF2 is that, within one backtracking step, Ullmann
compares pairs of adjacent nodes, while VF2 compares a node with its neigh-
borhood. Moreover, Ullmann’s approach verifies the semantic compatibility
between pairs of nodes in the match, while VF2’s feasibility test ensures a
correct structure of the match. A combination of VF2 and Ullmann for hier-
archical graphs was proposed in [43]. The idea was to merge the two search
plans providing containment edges and local edges to denote hierarchy. The
time complexity was thus improved.

Search-plan techniques are known to be more efficient than CSP algo-
rithms [20]. However, most of these techniques [17,6,62] are based on LHS-
RHS rule couple and do not allow to dissociate the matching part from the
rewriting part. CSP implementations is that rules can be interpreted instead
of compiled. The advantages of an interpreter is the execution of true in-place
transformations and support for arbitrary nesting and amalgamation of the
rules [2]. Furthermore in this context, self-modifying rules may alter their ex-
ecution at run-time. Note that the contribution of this article is not about
the performance of T-Core, but rather its expressiveness. For these reasons,
we chose to implement the pattern matching of the Matcher as a CSP back-
tracking algorithm.

3.1 An Efficient Sub-graph Isomorphism Algorithm

The matching algorithm of the Matcher combines our own variation of the
VF2 algorithm together with the refinement strategy of Ullmann’s algorithm,

3 In fact, it is homomorphic since the added attribute constraints in the pattern graphs
describe constraints on the attributes of the source graph.
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as outlined in Algorithm 10. The procedure extend augments the state of the

Algorithm 10 extend(state)

1: if mappingIsComplete(state) then

2: storeMatch(state)
3: return

4: for p, s in suggestMapping(state) do

5: if areCompatible(p, s) then

6: if areSyntacticallyFeasible(p, s) then

7: if areSemanticallyFeasible(p, s) then

8: state.storeMapping(p, s)
9: extend(state)

10: state.undoMapping(p, s)

algorithm with all possible mappings from the pattern graph to the source
graph. In the following, we call a mapping the one-to-one correspondence be-
tween a pattern node and a source node. We denote by a match the set of
mappings in which all source nodes form a graph that is homomorphic to
the pattern graph. Lines 4-14 recursively compute further mappings given the
current state of the algorithm. The state stores the following information:

– MP andMS are the mapping sets holding the pattern nodes and the source
nodes respectively in the current mappings,

– TP
out and T S

out hold the set of adjacent nodes to respectively MP and MS

following outgoing edges, at any time;
– TP

in and T S
in hold the set of adjacent edges coming in respectively MP and

MS following incoming edges, at any time;
– TP

inout = TP
out ∩ TP

in and T S
inout = T S

out ∩ T S
in.

TP
out, T

P
in, T

P
inout, and T S

inout are called the terminal sets. Each step of the search
computes a partial mapping of the nodes and verifies that it does not violate
the topology of the pattern graph. suggestMapping suggests a potential mapping
of a source node s with a pattern node p (the pair (p, s) is also known as the
candidate pair in [10]). The choice of the pair is done in the following order:
first from (TP

inout, T
S
inout), then from (TP

out, T
S
out), then from (TP

in, T
S
in), and

finally from all other nodes.
Afterwards, areCompatible verifies if it is worth continuing this mapping.

This is done by comparing the number of incident edges of s and p (this is
known as the refinement step in [56]). The compatibility check verifies that:

|Out(p)| ≤ |Out(s)| ∧ |In(p)| ≤ |In(s)| (1)

where In(n) and Out(n) respectively represent the set of incoming and out-
going adjacent edges of a node n. This is similar to the refinement step of
Ullmann’s algorithm.

Then come the feasibility checks. areSyntacticallyFeasible ensures that the
topology of the current mapping corresponds to a sub-graph of the pattern
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graph. This is done by looking at the number of incident edges when (p, s) is
added to the current set of mappings (MP and MS).

Let InOut(n) = In(n) +Out(n), for any node n,
let Outp = Out(p) ∩ TP

out and Outs = Out(s) ∩ T S
out,

let Inp = In(p) ∩ TP
in and Ins = In(s) ∩ T S

in,
let Allp = MP ∪ TP

out ∪ TP
in and Alls = MS ∪ T S

out ∪ T S
in.

Then the following must be true to ensure syntactic feasibility of s and p:

|Outp| ≤ |Outs| ∧ |Inp| ≤ |Ins| ∧ (2)

|Outp|+ |Inp|+ |InOut(p)−Allp| ≤ |Outs|+ |Ins|+ |InOut(s)−Alls|

The last test ensures that the semantics of s corresponds to the semantics of p.
In our case, semantic information of the nodes is encoded in their attributes,
but the details of the function areSemanticallyFeasible will be elaborated later
on. When s and p satisfy all of the above conditions, (p, s) is considered a
valid mapping and is stored in the state (line 8). The algorithm then continues
looking for remaining mappings. When all valid mappings have been computed
(lines 1-3), the corresponding match is stored. The algorithm backtracks to the
previous state when either a complete match is found or if the current partial
match (set of mappings in MP and MS) does not allow for any further valid
mapping. Note that a nice property of this algorithm is that any state in the
search tree is visited exactly once.

Algorithm 11 allows us to compute all matches between a pattern graph
P and a source graph S. Furthermore, an initial set of mappings can be spec-
ified to prune the search tree constructed by the procedure extend. This initial
mapping can also be seen as the initial context in which the matchings must
be computed: it restricts specific pattern nodes to be mapped exactly to pre-
defined source nodes.

Algorithm 11 computeMappings(S, P, context)

1: state ← initState(S, P)
2: for p, s in context do

3: state.update(p, s)
4: extend(state)
5: return state.getMatches()

3.2 Performance Evaluation of the Implementation

Let us first analyze the space complexity of the extend procedure. The state of
the algorithm is encoded in the state variable. It holds the two partial mapping
sets as well as the all terminal sets. Thus, the number of nodes stored in the
state is at most 5× |V (P )|+ 3× |V (S)| which is linear in terms of the nodes
of the source and pattern graphs. Moreover, since IGraph stores the nodes
as integers, state is quite compact. Additionally, the experiments below show
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(a) (b)

(c) (d)

Fig. 4 Size average of sub-graph isomorphism matching over the six pattern graphs. The
graphs are plotted on a log-log scale.

that the algorithm performs better if the adjacency list (encoded as a hash
table) is memorized as well. The size of this hash table is in the worst case

|V (P )|
2
+ |V (S)|

2
for fully connected, directed, simple graphs.

We now compare the time performance of the extend algorithm of T-Core’s
Matcher with VF2’s sub-graph isomorphism algorithm. We have chosen the
IGraph implementation of VF2 as a benchmark which is in direct correspon-
dence with the original implementation. Note that T-Core is implemented in
Python whereas VF2 was implemented in C. According to [18], Python is in
general slower than C by an average factor of 23, which is not integrated in
the results presented here. In these experiments, we gathered the computation
time with respect to the number of nodes n of the source graph. The source
graph represents random valid class diagrams. The average number of class
diagram elements is shown in Fig. 4(d). For each source graph we have run
the algorithm on six pattern graphs whose sizes range from 2 to 12 nodes. Our
experience shows that this is a typical size for LHS and NAC pre-condition
patterns assuming an expressive control flow language such as MoTif [55]. For
both the source and pattern graphs, the number of edges is the same order as
the number of nodes (which is typical in class diagrams). Each data point of
the plots in Fig. 4 represents the average time over the six pattern graphs.
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Fig. 4(a) shows the performance of both algorithms for finding the first

match only. For small graphs, VF2 is about 25 times faster than T-Core. For
medium graphs, VF2 is twice as fast as T-Core. However, at around 2.2× 105

nodes, both perform equally fast. At this point, T-Core overtakes VF2 by a
factor of 6 for large graphs.

Fig. 4(b) shows the performance of both algorithms for finding all matches.
For small graphs, VF2 is about 60 times faster than T-Core. For medium
graphs, VF2 is 5 times faster than T-Core. However at around 1.5×105 nodes,
both perform as fast. At this point, T-Core overtakes VF2 by a factor of 5 for
large graphs.

Fig. 4(c) shows the performance of both algorithms when no match exists.
For small graphs, VF2 is about 24 times faster than T-Core. The medium
graph category must be divided into two. For graphs with 103 to 104 nodes,
VF2 is 3.6 times faster than T-Core. As for graphs with 104 to 105 nodes,
T-Core overtakes by a factor of 2.2. The break even point is around 1.7× 104

nodes. At this point, T-Core overtakes VF2 by 3 times for large graphs.
The table in Fig. 4(d) summarizes these observations. Notice how T-Core

significantly outperforms VF2 for large graphs.

3.3 Pattern Matching

The transformation kernel of the new version of AToM3 [34] is T-Core. In T-

Core, the pre- and post-condition patterns of a rule are encoded as graphs
in IGraph. A pre-condition is composed of a positive condition graph (LHS)
and optional negative condition graphs (NACs). The semantics is as follows:
if an occurrence of the LHS is found in the source graph before the rule is
applied and none of the NACs are found, then an occurrence of the RHS must
be found in the source graph after the rule has been applied. A more formal
definition based on category theory can be found in [15].

In our implementation, a node n of a pattern graph holds the following
information:

– A universally unique identifier: such identifiers are ensured to be unique at
all time.

– The type t of the model element n encodes: the absolute path (across
packages) of the name of the type element.

– A boolean flag stm specifying whether a source node mapped to n must
be of type t or a sub-type of t.

– The set st of all sub-types of t.

– The identifier of a binding pivot
←

x (for pre-condition graphs). If specified,
it predefines which source node that was assigned to the pivot x must be
matched to n.

– The identifier of a pivot assignment
→

x . If specified, it indicates that the
source node mapped to n will be assigned to the pivot x.

– A label global to the scope of the rule. Node labeling in the different pattern
graphs of the rule is used as follows. In the LHS, a label allows one to
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distinguish between two nodes of the same type that must be mapped to
different source nodes. A label present in both the LHS and the RHS or in
both the LHS and a NAC corresponds to the same matched source node.
A label present in a NAC but not in the LHS allows one to distinguish
between two nodes of the same type that must be mapped to different
source nodes.

– Each attribute of the meta-model element corresponding to t is subject to
the RAM procedure [32]. In the LHS and the NAC, the node is assigned one
constraint per attribute. The constraint can be of arbitrary complexity, but
can only refer to source nodes bound to the corresponding pattern (LHS
xor NAC). In the RHS, the node is assigned an action code per attribute.
The action can be of arbitrary complexity, but can only refer to source
nodes bound to the LHS pattern.

The size of the data stored in each pattern node is 1,342 bytes, without taking
into consideration the meta-model attributes. Additional information is stored
at the graph pattern level: the set of all meta-models involved in the pattern4 as
well as an additional constraint (for a LHS or a NAC) or action (for an RHS).
The constraints and actions are treated similarly to pattern node attributes.

Up to now, we have described an efficient solution for finding a sub-graph
of the source graph isomorphic to the pattern graph. However, this is not
sufficient for pattern matching as it only takes into account the topology of the
pattern graph. Constraints attached to match patterns as well as NACs must
be taken into consideration as well. Algorithm 12 specifies a procedure that
modifies the previous sub-graph isomorphism solution for pattern matching
purposes. We must first modify the extend procedure to handle constraints
on meta-model attributes and node typing. The type of a pattern node p

and a source node s must correspond. This requirement must be verified as
early as possible to reduce the search space. We therefore modify the function
areCompatible in Algorithm 10. More specifically, condition (1) must now take
into consideration the types of the candidate pair (p, s) as specified in (3),
such that the type of s is the same as the type of p or one of its sub-types. (1)
can then be rewritten as:

|Out(p)| ≤ |Out(s)|∧|In(p)| ≤ |In(s)|∧((s.t = p.t)∨(p.stm∧s.t ∈ p.st)) (3)

Additionally, the function areSemanticallyFeasible must ensure that the at-
tributes held in s each satisfy the corresponding meta-model attribute con-
straints in p. Also, to help the algorithm find a match as soon as possible, we
have parametrized the suggestMapping function with a priority mechanism to
suggest a candidate pair. Our implementation allows us to specify an arbitrary
order of a terminal set. By default, suggestMapping will suggest an unmatched
pattern node such that its type occurs the least often in the graph. This heuris-
tic ordering can be modularly extended with further knowledge of the pattern
graph and the source graph.

4 Because in AToM3, rules can involve many meta-models as in e.g., multi graph gram-
mars [29].
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Algorithm 12 match(G, LHS, context)

1: validMatches ← ∅
2: moreNACs ← False

3: for NAC in LHS.getNACs() do

4: bridge ← NAC.getBridge()
5: if V (NAC.getBridge()) > 0 then

6: moreNACs ← True

7: else

8: for nacMatch in computeMappings(G, NAC, context) do

9: if NAC.checkConstraint(nacMatch) then

10: return ∅
11: if not moreNACs then

12: for lhsMatch in computeMappings(G, LHS, context) do

13: if LHS.checkConstraint(lhsMatch) then

14: validMatches ← validMatches ∪ {lhsMatch}
15: return validMatches
16: maxNAC ← LHS.getNACwithMaxBridge()
17: B ← maxNAC.getBridge()
18: for bMatch in computeMappings(G, B, context) do

19: for maxNACMatching in computeMappings(G, maxNAC, bMatch ∪ context) do

20: if not maxNAC.checkConstraint(maxNACMatching) then

21: goto 20
22: for lhsMatch in computeMappings(G, LHS, bMatch ∪ context) do

23: if LHS.checkConstraint(lhsMatch) then

24: for NAC in LHS.getNACs() do

25: if NAC 6= maxNAC and V (NAC.getBridge()) > 0 then

26: for nacMatch in computeMappings(G, NAC, lhsMatch ∪ context) do

27: if not NAC.checkConstraint(nacMatch) then

28: validMatches ← validMatches ∪ {lhsMatch}
29: return validMatches

The pattern matching algorithm of theMatcher is described in Algorithm 12.
The procedure match takes a source graph G and the LHS pattern graph as
input. Pivot bindings may also be specified in the context. The procedure
can be one of three cases. In the following, we consider a match as valid if
the source nodes in the mappings of the match satisfy the constraint of the
pattern graph.

No NACs. When there are no NACs specified in the pre-condition pat-
tern, then only lines 1-3 and 11-15 are applied. This simply calls the
computeMappings procedure and returns the valid matches.

Unbound NACs. We denote a NAC as unbound if none of its nodes has a
label present in the corresponding LHS. If the pre-condition has unbound
NACs, it suffices to find one valid NAC match to prevent the pre-condition
pattern from successfully finding any matches. Lines 3-10 describe this
behavior. First, G is matched on the NAC with the provided context. If no
valid match is found, the procedure then tries to find matches for the LHS
as in the previous case. Otherwise, no match is output.

Bound NACs. All other NACs are bound to the LHS (lines 16-29). Since
computeMappings is the most costly procedure, we want to avoid computing
mappings twice, i.e., the common part between the LHS and a NAC. Thus
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the idea is to first match the common part between the LHS and a NAC,
then continue the matching along the NAC, and finally, if no valid NAC
matches were found, continue from the match of the common part along
the LHS.
A NAC having a common part with the LHS means that there is a sub-
graph of the LHS that overlaps with the NAC. We denote this intersection
as a pre-condition graph called bridge. In general, computing the bridge
would require us to find the maximum common sub-graph (MCS) between
these two graphs. Solving the MCS isomorphism problem is NP-Complete.
However, making use of the labels in the pattern graphs reduces the com-
plexity to linear-time. Therefore the bridge can be constructed as follows: if
a node has a label present in nodes of both the LHS and the NAC, then this
node is part of the bridge. Also, every edge in the smallest graph between
the LHS and the NAC whose source and target nodes are in the bridge is
part of the bridge. However, recall that pattern nodes also hold a constraint
for each meta-model attribute. Thus, each meta-model attribute of a bridge
node is computed as the conjunction of the corresponding attribute con-
straint in the LHS and the corresponding attribute constraint in the NAC.
Note that no constraint is added on the pattern graph of the bridge as
in the LHS or NAC cases. It is easy to show that the time complexity of
constructing the bridge between the LHS and an NAC is O(V +E), where
V = max(|V (LHS)| , |V (NAC)|) and E = min(|E(LHS)| , |E(NAC)|)5.
In the match procedure, line 17 computes the bridge B with the largest
number of nodes. Since a bridge can be statically computed, all bridges have
already been precomputed and integrated in the corresponding NACs (at
compile-time). On line 18, G is matched on B with the provided context.
Then on lines 19-21, G is matched on the NAC corresponding to B. To
prune the search space of this matching, the bridge mappings are provided
as context together with the initial context. Those mappings are valid since
the nodes in B are in the NAC as well. If a valid match for this NAC is
found, then the current match of B is discarded and the next one is tried.
When a match of B is found such that it does not induce a valid match, we
match G on the LHS with again the bridge mappings provided as context
together with the initial context. Each valid match of the LHS represents a
potential valid match of the procedure. However, there may be additional
bound NACs with a bridge having less nodes than B. In this case, lines
24-28 ensure that only the valid matches of the LHS that do not satisfy the
remaining NACs are stored. Note that when applying the computeMappings

procedure on G with the remaining NACs, the LHS mappings are provided
as context together with any pivot node bound in the LHS that were given
in the initial context. Finally on line 29, only the valid matches are output.

When multiple matches need to be found, it would be overly expensive to
execute the whole procedure every time. For this reason, our implementation

5 V should also be multiplied by the maximum number of meta-model attributes, which
is small in practice.
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relies on the iterative pattern [19] which enables the procedure to halt after a
complete match is found and the search is resumed on the next invocation.

3.4 Rewriting the Matches

A rule is successfully applied when its pre-condition is satisfied. The pre-
condition satisfaction is ensured by the pattern matching algorithm described
previously. One way to satisfy the post-condition is to modify the matched
nodes in the source graph appropriately. To transform (or rewrite) the matches,
a RHS pattern graph is provided with a compiled execute function encoding the
appropriate modification actions, which is invoked by the Rewriter. Given the
LHS and the RHS pattern graphs, the rewriting of a match M = {(p, s)|p ∈
LHS ∧ s ∈ G} can be statically determined. For each (p, s) ∈ M we perform
the following steps in order:

1. If the label of p is present in both the LHS and the RHS, then an update

operation is executed. Each attribute of s is set according to the action
specified in the corresponding meta-model attribute of the RHS node that
has the same label as p.

2. Let C represent the graph whose node labels are present in the RHS but not
in the interface graphK. Also edges of C are constructed in a similar way as
for the bridge, i.e., E(C) = {(ni, nj)|ni, nj ∈ V (C) ∧ (ni, nj) ∈ E(RHS)}.
Then a create operation is applied to the nodes and edges of C. For each
node (or edge) in V (C) (or E(C)), a corresponding source node (edge) is
created in the source graph. Furthermore, the attributes of the new nodes
are initialized according to the action specified in the corresponding meta-
model attribute of the respective node in C.

3. If the label of p is present in the LHS but not in the RHS, then a delete

operation is applied and removes s from the source graph. Note that in
IGraph, deleting a node automatically deletes its adjacent edges.

4. If p is assigned a pivot identifier
→

x , then
→

x will be mapped to s.
5. Finally, after all nodes have been processed, we apply the action specified

in the RHS on the source nodes that are in M as well as those created
from C.

The run-time complexity of the Rewriter is linear: O(|V (LHS)| +
|E(LHS)| + |V (RHS)| + |E(RHS)|). Note that according to graph transfor-
mation literature [14], T-Core’s transformation procedure follows the Single-
Pushout (SPO) approach in contrast with the Double-Pushout (DPO) ap-
proach. On the one hand, the identification issue of the gluing condition in
DPO is avoided thanks to the labeling mechanism in place. That is because
every node in each pattern graph is unique and thus may be mapped to ex-
actly one node in each matching. On the other hand, we have explicitly chosen
to solve the dangling edges issue automatically. That is if a matched source
node must be deleted, all its adjacent edges will be deleted too. This has the
advantage of reducing the number of rules in the transformation.
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For an in-depth analysis of the performance of T-Core as well as a per-
formance comparison with other MTLs, we refer the reader to the following
technical report [54].

4 Transformation Language Product Line

T-Core empowers the transformation developer to build transformation units
that are specific to the problem the transformation will solve. General-purpose
transformation languages, such as QVT or ATL, encumber the developer with
unneeded features. This adds complexity to the design the transformation
which may lead to design errors and even reduce productivity [27]. In con-
trast, MTLs based on T-Core enable designing transformation models that
are tailored to the problem domain. This helps obtaining more optimal and
simpler solutions than with general-purpose transformation languages.

There is a wide variety of transformation languages and tools that exist
today. Also, they are very powerful in solving the problems they were ini-
tially intended for. For example, FUJABA [41] is primarily meant to provide
reverse-engineering capability, AToM3 [34] and GReAT for defining transla-
tional semantics and simulation of formalisms, the new version of VIATRA [7]
to provide means for model synchronization, etc. However, most of them have
a tendency to provide a generic tool for solving any kind of model transfor-
mation problem. This is especially true with the arrival of QVT and most
applications of ATL [42]. This genericity requires transformation languages to
be very expressive, which makes analysis of transformation models built us-
ing these general purpose transformation languages very hard. In fact, some
approaches have realized this problem and propose Turing-incomplete trans-
formation languages, such as DSLTrans [5].

The solution proposed here is to use a sub-set of T-Core primitives to
restrict a transformation language for one specific purpose or intention. To
some extent, one can redefine a transformation language as consisting of the
following features:

1. Primitive transformation operators, for example taken from (a sub-
set of) the T-Core module;

2. Combined with a scheduling language, which can be programmed (e.g.,
Java [16]) or modeled (e.g., UML Activity diagrams [36], Colored Petri
nets [61]).

In fact, the scheduling language may be a domain-specific language dedicated
for defining transformation schedulers. The combination of both provides a
product line of problem-specific transformation languages. This restricts the
transformation engineer to focus entirely on designing transformation models
without added complexity that is irrelevant for the purpose of the transfor-
mation. Also, the transformation language has no more expressiveness than is
needed and this may allow for better analysis of the transformation models.
Nevertheless, the expressiveness of the transformation language then depends
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(a) (b)

(c) (d)

Fig. 5 Combining T-Core with other languages allows one to re-construct existing and new
languages.

on the glue language (i.e., the scheduler) used and the primitive operators
chosen.

De-constructing MTLs in a collection of model transformation primitives
makes it easier to reason about transformation languages. In fact, properly
combining T-Core primitives with an existing well-formed programming or
modeling language allows us to re-construct some already existing transfor-
mation languages and even construct new ones. Fig. 5 shows some examples
of combinations of T-Core with other languages. Fig. 5(a) and Fig. 5(b) com-
bine a subset of T-Core with a simple (programming) language which offers se-
quencing, branching, and looping mechanisms (as proposed in Böhm-Jacopini’s
structured program theorem [8]). We will refer to such a language as an SBL

language. The first combination only involves theMatcher and its PreCondition-
Pattern, Packet messages to exchange, and the Composer to organize the prim-
itives. These T-Core primitives integrated in an SBL language lead to a query

language. Since only matching operations can be performed on the model, they
represent queries where the resulting packet holds the set of all elements (sub-
graph) of the model (graph) that satisfy the desired pre-conditions. Including
other T-Core primitives such as the Rewriter promotes the query language to
a transformation language. Fig. 5(b) enumerates the T-Core primitives com-
bined with an SBL language necessary to design a complete sequential MTL.
Replacing the SBL language by another one, such as UML Activity Diagrams
in Fig. 5(c), allows us to re-construct Story Diagrams [17], for example, since
they are defined as a combination of UML Activity and Collaboration Dia-
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grams with graph transformation features. Other combinations involving the
whole T-Core module may lead to novel transformation languages with excep-
tion handling and the notion of timed model transformations when combined
with a discrete-event modeling language [53].

We now present the re-construction of two transformation features using
the combination of an SBL language with T-Core as in Fig. 5(b). Then we
present the construction of a newMTL by combining T-Core with a programing
language.

4.1 Re-constructing Story Diagrams

In the context of object-oriented reverse-engineering, the FUJABA tool allows
the user to specify the content of a class method by means of Story Diagrams,
an extension of UML Activity Diagrams. A Story Diagram organizes the be-
havior of a method with activities and transitions. An activity can be a Story

Pattern or a statement activity. The former consists of a graph transformation
rule and the latter is Java code. Fig. 6(a) shows such a story diagram taken
from the doDemo method example in [17]. This snippet represents an elevator
loading people on a given floor of a house who wish to go to another level. The
rule in the pattern is specified in a UML Collaboration Diagram-like notation
[22] with objects and associations. Objects with implicit types (e.g., this, l2,
and e1) are bound objects from previous patterns or variables in the context of
the current method. The Story Pattern 6 is a for-all Pattern. Its rule is applied
on all matches found looping over the unbound objects (e.g., p4, and l4). The
outgoing transition labeled each time applies statement 7 after each iteration of
the for-all Pattern. This activity allows the pattern to simulate random choices
of levels for different people. When all iterations have been completed, the
flow proceeds with statement 8 reached by the transition labeled end, which
simulates the elevator going one level up.

We now show how to re-construct this non-trivial story diagram trans-
formation from an SLB language combined with T-Core. An instance of that
combination is called a T-Core model. First, we design the rules needed for the
conditions of rule primitives. Fig. 6(b) describes the three necessary rules cor-
responding to the three Story Diagram activities. We use the visual concrete
syntax of MoTif where the central compartment is the LHS, the compartment
on the right of the arrow head is the RHS and the compartment(s) on the
left of dashed lines are the NAC(s). The concrete syntax for representing the
pattern was chosen to be intuitively close enough to the FUJABA graphical
representation. Numeric labels are used to uniquely identify different elements
across compartments. Elements with an alpha-numeric label between paren-
theses denote pivot elements. A right-directed arrow on top of the label de-
picts that the model element matched for this pattern element is assigned to
a pivot (e.g., p4 and l4). A left-directed arrow on top of the label depicts that
the model element matched for this pattern element is bound to the specified
pivot (e.g., this and e1).
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Fig. 6 (a) The FUJABA doSubDemo transformation showing a for-all Pattern and two
statement activities. (b) The three MoTif rules for the doSubDemo transformation.

The T-Core model equivalent to the original doSubDemo transformation
consists of a Composer doSubDemoC. It is composed of two Composers loadC

and nextStepC each containing a Matcher, an Iterator, a Rewriter, and a Re-

solver. The packetIn method of doSubDemoC first calls the corresponding method
of loadC and then feeds the returned packet to the packetIn method of nextStepC.
This ensures that the output packet of the overall transformation is the result
of first loading all the Person objects and then moving the elevator by one step.
Algorithm 13 describes this behavior.

Algorithm 13 doSubDemoC.packetIn(π)
π ← loadC.packetIn(π)
π ← nextStepC.packetIn(π)
isSuccess ← true

return π

makeChoiceC and nextStepC behave as simple transformation rules. Their
packetIn method behaves as specified in Algorithm 14. First, the matcher is
tried on the input packet. Note that the conditions of the matchers make-

ChoiceM and nextStepM are the LHSs of rules makeChoice and nextStep, re-
spectively. If the matcher fails, the composer goes into failure mode and the
packet is returned. Then, the iterator chooses a match. Subsequently, the
rewriter attempts to transform this match. Note that the conditions of the
rewriters makeChoiceW and nextStepW are the RHSs of rules makeChoice and
nextStep, respectively. If the rewriter fails, an exception is thrown and the
transformation stops. Otherwise, the resolver verifies the application of this
pattern with respect to other matches in the transformed packet. The behavior
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of the resolution function will be elaborated on later. Finally, on a successful
resolution, the resulting packet is output and the composer is put in success
mode.

loadC is the composer that emulates the for-all Pattern of the example.
Algorithm 15 specifies that behavior. After finding all matches with loadM

(whose condition is the LHS and the NAC of rule load), the packet is forwarded
to the iterator loadI to choose a match. The iteration is emulated by a loop
with the failure mode of loadI as the breaking condition. Inside the loop,
loadW rewrites the chosen match and loadR resolves possible conflicts. Then,
the resulting packet is sent to makeChoiceC to fulfil the each time transition of
the story digram. After that, the nextIn method of loadI is invoked with the
new packet to choose a new match and proceed in the loop.

Having seen the overall T-Core transformation model, let us examine how
the different Resolvers should behave in order to provide a correct and com-
plete transformation. The first rewriter called is loadW and the first time it
receives a packet is when a transformation is applied on one of the matches of
the matcher loadM. Therefore each match consists of the same House (since it
is a bound node), two Levels, an Elevator, and the associations between them.
On the other hand, loadW only adds a Person and links it to a Level. There-
fore the default resolution function of the resolver loadR applies successfully,
since no matched element is modified nor is the NAC violated in any other
match. The next resolver is makeChoiceR which is in the same loop as loadR.
There, the House is conflicting with all the matches in the packet according to
the conservative default resolution function. Note that makeChoiceM finds at
most one match (the bound House element). However, makeChoiceW does not
really conflict with matches found in loadM. We therefore specify a custom
resolution function for makeChoiceR that always succeeds. The same applies
for nextStepR.
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Fig. 7 The transformation rules for the Repot-

ting Geraniums example

Algorithm 16 baseC.packetIn(π)
isSuccess ← false

π ← baseM.packetIn(π)
if not baseM.isSuccess then

return π

while true do

π ← baseI.packetIn(π)
if baseI.isSuccess then

π ← baseW.packetIn(π)
if not baseW.isSuccess then

return π

π ← baseR.packetIn(π)
if not baseR.isSuccess then

return π

π ← innerC.packetIn(π)
π ← baseM.packetIn(π)
if not baseM.isSuccess then

isSuccess ← true

return π

Algorithm 14 makeChoiceC.packetIn(π)
isSuccess ← false

π ← makeChoiceM.packetIn(π)
if not makeChoiceM.isSuccess then

return π

π ← makeChoiceI.packetIn(π)
if not makeChoiceI.isSuccess then

return π

π ← makeChoiceW.packetIn(π)
if not makeChoiceW.isSuccess then

return π

π ← makeChoiceR.packetIn(π)
if not makeChoiceR.isSuccess then

return π

isSuccess ← true

return π

Algorithm 15 loadC.packetIn(π)
isSuccess ← false

π ← loadM.packetIn(π)
if not loadM.isSuccess then

return π

π ← loadI.packetIn(π)
if not loadI.isSuccess then

return π

while true do

π ← loadW.packetIn(π)
if not loadW.isSuccess then

return π

π ← loadR.packetIn(π)
if not loadR.isSuccess then

return π

π ← makeChoiceC.packetIn(π)
π ← loadI.nextIn(π)
if not loadI.isSuccess then

isSuccess ← true

return π

4.2 Re-constructing amalgamated rules

Rensink et al. claim that the Repotting the Geraniums example is inexpress-
ible in most transformation formalisms [44]. The authors propose a transfor-
mation language that uses an amalgamation scheme for nested graph transfor-
mation rules. As we have seen in the previous example, nesting transformation
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rules is possible in T-Core and will be used to solve the problem. It consists
of repotting all flowering geraniums whose pots have cracked. Fig. 7 illustrates
the two nested graph transformation rules involved and Algorithm 16 demon-
strates the composition of primitive T-Core elements encoding these rules.
baseM (with, as condition, the LHS of rule base) finds all broken pots contain-
ing a flowering geranium, given the input packet containing the input graph.
The set of matches resulting in the packet are the combination of all flowering
geraniums and their pot container. From then on starts the loop. First, baseI
chooses a match. If one is chosen, baseW transforms this match and baseR

resolves any conflicts. In this case, baseW only creates a new unbroken pot
and assigns pivots. Therefore, baseR’s resolution function always succeeds. In
fact, the resolver is not needed here, but we include it for consistency. The
innerC composer encodes the inner rule which finds the two bound pots and
moves a flourishing flower in the broken pot to the unbroken one. In order to
iterate over all the flowers in the broken pot, the innerC.packetIn method has
the exact same behavior as loadC.packetIn in Algorithm 15, with the excep-
tion of not calling a sub-composer (like makeChoiceC). Note that an always
successful custom resolution function for innerR is required. After the Resolver

successfully outputs the packet, the inner rule is applied. Then (and also if
baseI had failed) baseM.packetIn is called again with the resulting packet. The
loop ends when the baseM.packetIn method call inside the loop fails, which
entails baseC returning the final packet in success mode.

4.3 Re-constructing non-deterministic rule selection

GReAT is a well-known graph transformation language with asynchronous
behavior [1]. For example, Fig. 8 presents a Test block where two Cases (atomic
or composite rules) can be applied. When a Test block receives a packet in
GReAT, the packet is tested on all the Cases. If multiple Cases succeed, only
one will be applied non-deterministically. Algorithm 17 shows how the Test

block is re-constructed using T-Core primitives. The packets output from the
Matcher of each rule are accumulated in a Selector S. The select method is
responsible for the non-deterministic selection of a rule as previously described
in Section 2.1.6. Then, the rule corresponding to the chosen packet is applied.
The method getRuleFromPacket finds the rule whose Matcher corresponds to the
condition of the packet. Note that no resolver is needed for the Test composer
since at most one rule is executed.

4.4 Py-T-Core

Currently we have implemented T-Core in Python and it is available at the
website [48]. It is a direct implementation of the class diagram of Fig. 1.
Therefore, the combination of T-Core primitives with Python as a scheduling
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Fig. 8 A Test block in GReAT
showing two cases.

Algorithm 17 TestC.packetIn(π)
isSuccess ← false

for all r ∈ rules do

π ← r.M.packetIn(π)

if r.M.isSuccess then

S.successIn(π)
else

S.failIn(π)
π ← S.select()
S.reset()
if not S.isSuccess then

return π

r ← getRuleFromPacket(rules, π)

π ← r.I.packetIn(π)

if not r.I.isSuccess then

return π

π ← r.W.packetIn(π)

if not r.W.isSuccess then

return π

isSuccess ← true

return π

language seems adequate. This results in a new transformation language, called
Py-T-Core6. It encapsulates re-usable idioms often found in existing MTLs.

For example, a query is defined as in Listing 1: given a packet, if a match
is found it is selected and the resulting packet is output. The packet then
consists of a single match set containing a single match. This match describes
the sub-graph that satisfies the pre-condition pattern i.e., the query.

Listing 1 A query in Py-T-Core.

class Query(Composer ):

def __init__ (self , LHS ):

super (Query , self). __init__ ()

self.M = Matcher ( condition =LHS , max=1) # Find 1 match

self.I = Iterator (max_iterations=1) # Select the only match

def packet_in (self , packet ):

self.is_success = False

packet = self.M.packet_in (packet )

if not self.M. is_success : return packet

packet = self.I.packet_in (packet )

if not self.I. is_success : return packet

self.is_success = True

return packet

Listing 2 illustrates how a simple rule is defined following Algorithm 14.

Listing 2 A simple rule in Py-T-Core.

6 Similarly, an implementation in C would be called C-T-Core or in Java would be called
J-T-Core.
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class ARule(Composer ):

def __init__ (self , LHS , RHS ):

super (ARule , self). __init__ ()

self.M = Matcher ( condition =LHS , max=1) # Find 1 match

self.I = Iterator (max_iterations=1) # Select the only match

self.W = Rewriter (condition =RHS )

def packet_in (self , packet ):

self.is_success = False

packet = self.M.packet_in (packet )

if not self.M. is_success : return packet

packet = self.I.packet_in (packet )

if not self.I. is_success : return packet

packet = self.W.packet_in (packet )

if not self.W. is_success : return packet

self.is_success = True

return packet

Listing 3 defines a transformation unit that applies a rule on all matches
found.

Listing 3 A rule applied on all matches at once in Py-T-Core.

class FRule(ARule ):

def __init__ (self , LHS , RHS , max_iterations ,

external_matches_only , custom_resolution ):

super (FRule , self). __init__ (LHS , RHS)

self.M.max = max_iterations

self.I.max_iterations = max_iterations

self.R = Resolver (external_matches_only , custom_resolution)

def packet_in (self , packet ):

self.is_success = False

packet = self.M.packet_in (packet ) # Find all matches

if not self.M. is_success : return packet

packet = self.I.packet_in (packet )

if not self.I. is_success : return packet

while True:

packet = self.W.packet_in (packet )

if not self.W.is_success : return packet

packet = self.R.packet_in (packet )

if not self.R.is_success : # Resolve any conflicts if needed

self.exception = self.R.exception

return packet

packet = self.I.next_in (packet ) # Choose another match

if not self.I.is_success : # No more iterations are left

self.is_success = True

return packet

Listing 4 defines a transformation unit that applies a rule as long as there
are matches. This is similar to what was described in Algorithm 16, with the
difference that the latter also had a nested rule applied inside the loop.

Listing 4 A rule applied as long as possible in Py-T-Core.

class SRule(ARule ):

def __init__ (self , LHS , RHS , max_iterations):

super (SRule , self). __init__ (LHS , RHS)
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self.I.max_iterations = max_iterations

def packet_in (self , packet ):

self.is_success = False

packet = self.M.packet_in (packet )

if not self.M. is_success : return packet

packet = self.I.packet_in (packet ) # Choose the 1st match

if not self.I. is_success : return packet

while True:

packet = self.W.packet_in (packet )

if not self.W.is_success : return packet

self.is_success = True # Rule was successfully applied once

if self.I.iterations == self.I.max_iterations: return packet

packet = self.M.packet_in (packet )

if not self.M.is_success : return packet

packet = self.I.next_in (packet )

if not self.I.is_success : # No more iterations are left

return packet

Py-T-Core allows a programmed7 software to integrate with model trans-
formation solutions thanks to the T-Core API. This is a pragmatic solution
to bridge the gap between software developers who program large-scale sys-
tems and domain experts who describe the behaviors of their model through
transformation. Other solutions to this problem exist, such as EMFTiger [16]
where the integration is restricted to Java.

5 Case study: Re-engineering DSLTrans with T-Core

T-Core has been designed to represent the basic building blocks of transforma-
tion languages. To demonstrate its power to handle different types of trans-
formation languages and provide empirical evidence that it can do so, requires
choosing representative transformation languages and confirming they can be
re-engineered to work through T-Core.

DSLTrans [5] is one such transformation language. DSLTrans is a Turing in-
complete language that guarantees the confluence of any transformations de-
signed using it. It also guarantees any transformation will terminate. A T-Core

implementation will automatically benefit from these properties of DSLTrans.
DSLTrans is built on a series of object and connection elements (shown in
Table 2) to handle the transformation to the output model. It provides sev-
eral interesting constructs that need a T-Core implementation to provide a
straightforward mapping from a given DSLTrans transformation to a T-Core

transformation. We have developed a T-Core plug-in for AToM3. Models and
rules can be translated from AToM3 to T-Core graphs and compiled rules. Cer-
tain restrictions on the final DSLTrans output model also require special T-Core
implementation. An appropriate Py-T-Core transformation then schedules the
application of the rules.

Several challenges are presented when translating DSLTrans to T-Core.
Since DSLTrans is built to transform Ecore-based models [21], DSLTrans re-

7 As opposed to a modeled software where no artifacts are hard-coded.
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Objects Connections

ApplyAssociation
AnyMatchClass FilePort AttributeRef
ApplyAttribute Layer ExplicitSource
ApplyClass MatchAttribute Import
ApplyModel MatchModel NegativeIndirectAssociation

Atom MetaModelIdentifier NegativeMatchAssociation
AttributeRef NegativeMatchClass PositiveBackwardRestriction

Concat Rule PositiveIndirectAssociation
ExistsMatchClass WildCard PositiveMatchAssociation

PreviousSource

Table 2 DSLTrans elements.

spects the standard EMF constraint that every meta-model has a root ele-
ment type that all other elements are contained within directly or indirectly.
DSLTrans is also outplace: it builds its output model separately from the input
model it is transforming and there can be no elements from the input model
in the output model at any time. DSLTrans does maintain traceability links
between the new elements and the associated original elements during trans-
formation, but that is not reflected in the final output model. The Py-T-Core

implementation must handle these restrictions. For specific rule scheduling,
DSLTrans uses a sequence of layers. Other DSLTrans elements have different
uses depending on which other transformation elements are connected to them.
Finally, DSLTrans has a concept of indirect containment, where a rule pre-
condition succeeding can depend on whether two elements are connected by
recursive association. The Py-T-Core implementation must provide procedures
and approaches for handling these scenarios as well.

In the sequel, we describe the main challenges in the DSLTrans re-construction
process, focusing on the most complex constructs. For the full description of
the translation, the reader can refer to the experience report [35].

5.1 Layers

A DSLTrans transformation consists of layers. Rules within layers are executed
in a non-deterministic order until none of them can applied again. Applying a
DSLTrans Rule does not make it ineligible to be re-applied. The corresponding
Py-T-Core transformation unit is the BSRule shown in Listing 5. It consists
of looping over a BRule (c.f. Algorithm ) that applies rules/branches until we
run out of successful branches. Each DSLTrans Layer will have an analogous
Py-T-Core BSRule.

Listing 5 Selects a branch in which the matcher succeeds, as long as matches can be found.

class BSRule (Composer ):

def __init__ (self , branches , max_iterations=INFINITY ):

super (BSRule , self ).__init__ ()

self.brule = BRule(branches )
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self.max_iterations = max_iterations

self.iterations = 0

def packet_in (self , packet ):

self.is_success = False

while self.iterations < self.max_iterations:

packet = self.brule .packet_in (packet )

if not self.brule.is_success : return packet

else: self.is_success = True

self.iterations += 1

return packet

Each layer, other than the first, is connected to the previous layer. In Py-

T-Core, we define a Sequence to sequentially run each BSRule. The primary
scheduler will pass the collection of layers to the Sequence in the correct order.

5.2 Positive Indirect Associations

DSLTrans supports deep containment relationships. Since this is not directly
supported in T-Core, it had to be broken down into several steps to be imple-
mented in Py-T-Core. This requires the creation of several new Py-T-Core rules.
This section will describe the PositiveIndirectAssociation element and its associ-
ated Py-T-Core rules and the next will describe the NegativeIndirectAssociation
elements and its associated Py-T-Core rules.

The PositiveIndirectAssociation represents a relationship between two classes
where the target class has at least one relationship with itself. The rule will fol-
low the associations and provide a match for each element along the route. To
implement this functionality, the traversal along associations and subsequent
matching is broken up into three rules that are used along with the actual rule
specified in DSLTrans to correctly transform the model. The LHS and RHS of
all the rules is sent to the new PositiveIndirectRule. The traversal itself uses
pivots in the three rules to continue to process each branch along the indirect
association. For clarity, an example of a PositiveIndirectRule with associated
setup, initialize, and traverse rule is shown in Figure 9 using the Genealo-
gyTree example introduced in the DSLTrans manual, along with a suggested
change to the formalism to accommodate nested marriages. An example of the
output of such a rule based on a given input model is shown in Figure 10. A
ring corresponds to a marriage and a heart to a couple. A direct descendant
relation is depicted by an solid arrow. A descendant relation of any depth
is depicted by a smaller dashed arrow. A filled in stick figure corresponds to
person in the genealogy tree meta-model. A stick figure outline corresponds
to a person in the couple set meta-model. Generic links are used as explicit
traceability links.

The first rule is the setup rule. The LHS of this rule takes everything from
the DSLTrans ApplyModel except the part with the indirect association. If that
can be found, a pivot labeled initial is set up on the target instance of the
indirect association. In the Genealogy Tree to CoupleSet example, we only
need to find instances of marriages from the input model as shown in the LHS
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Fig. 9 An example set of rules to check for a deep containment relationship to match every
couple with its descendant couples.

Fig. 10 An example of an input model and the ouput descendant couples.

of the setup rule. The RHS of the rule will set up the pivot for each setup
match found. It will also add a generic link from the marriage back to itself
which the NAC checks to make sure the rule will not be applied again on the
same element within the layer. This pivot is then used in the second rule, the
initialize rule, to tie a pivot labeled end to the same instance as the initial pivot.
In our example, the initialize rule matches the initial pivot marriage already
created and adds the additional end pivot to the same marriage. The traverse

rule will move along the associations to find further indirectly connected class
instances by moving the end pivot. This is done using a depth-first search
because the connections along associations could form a tree if the connection
has cardinality of 0..∗. The PositiveIndirectRule uses nested rule functionality
to apply all four rules in the correct order. As we traverse, we need to apply
the actual rule. In our example, we are connecting the couple associated with
the initial marriage to every other couple associated with a marriage found
during the traversal. Therefore, when we are finished, every couple should
be connected to all of its descendant couples. The rule connect is therefore
executed after every application of the traverse rule. The generic link between
a marriage and a couple was added in a previous layer.

Listing 6 A rule that tests for indirect containment before applying the actual rule in
Py-T-Core.

class PositiveIndirectRule( Composer ):

def __init__ (self , setupLHS , setupRHS , initialLHS , initialRHS ,

traverseLHS , traverseRHS , rule , max_iterations=INFINITY ):

super (PositiveIndirectRule , self). __init__ ()

inner_traversal_rule = Sequence ([rule ,

LSRule (traverseLHS , traverseRHS ,rule , True , max_iterations)])

outer_traversal_rule = Sequence ([ ARule(initialLHS , initialRHS ),

IRule(traverseLHS , traverseRHS ,

inner_traversal_rule , max_iterations )])

self.M = Matcher ( condition =setupLHS , max =max_iterations)

self.I = Iterator (max_iterations=max_iterations)

self.W = Rewriter (condition =setupRHS )
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self.inner_rule = outer_traversal_rule

def packet_in (self , packet ):

self.is_success = False

packet = self.M.packet_in (packet )

if not self.M. is_success : return packet

packet = self.I.packet_in (packet ) #Choose the 1st match

if not self.I. is_success : return packet

while True:

packet = self.W.packet_in (packet )

if not self.W.is_success : return packet

packet = self.inner_rule .packet_in (packet ) #Apply inner rule

packet = self.I.next_in (packet )

if not self.I.is_success : #No more iterations are left

self.is_success = True #Output success packet

return packet

As shown in the code of Listing 6, the packet in method specifies the scheduling
of these four rules. Note how the rule to be applied at every traversal step
is given as a parameter (the connect rule in our case). This rule can be an
arbitrary Py-T-Core Composer. But typically, an ARule is used if it is only
using ExistsMatchClass elements in DSLTrans or an FRule if there is at least one
AnyMatchClass element. The inner rule to handle traversal and rule application
is a specific further nesting of rules. Since the outer setup rule is always applied
first in an PositiveIndirectRule, the inner traversal and rule application will be
correctly applied to every instance that could be matched as a valid item for
setup.

The indirect rule’s inner rule is the heart of the traversal process. Specifi-
cally, the inner rule is a pair of nested Sequence rules to handle a depth-first
search. The outer traversal Sequence [the indirect rule’s inner rule] runs the
initialize rule to prepare for traversal along the previously selected setup path.
For each initialized path, it starts the traversal using an IRule. An IRule is
a PositiveIndirectRule without a rule to be applied during the traversal. This
traversal handles the breadth portion of the depth-first search. An example of
the IRule can be seen in Algorithm 15. The initial run of the traverse rule will
find the end pivot assigned in the initialize rule, and will move the end pivot
to a connected indirect association. As mentioned, the Matcher has stored all
of the other connected indirect associations from element with the previous
end pivot on the packet, so when we eventually return to this point it will be
able to choose the next match appropriately. Until then, the inner rule of the
IRule starts. This inner rule is the second of the pair of nested Sequence rules
mentioned earlier. Since we have just found a connected indirect association
and labeled the appropriate class element with the end pivot, we can apply
the rule to that endpoint. The first rule in the internal Sequence is the actual
rule so it is applied now. The rule should consist of at least the model element
labeled with the initial pivot. Once this first rewrite succeeds, we can proceed
with the next set of traversals. This is handled by an LSRule which will apply
an inner rule for each application of the outer rule as long as matches can be
found. This is the same as the IRule except that it re-applies the outer rule on
every iteration. This works in our favor because the traverse rule (the outer
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rule for our usage of the LSRule) will continually move the end pivot down
the indirect hierarchy in a depth-first manner as it is rematched. After each
individual depth traversal, the inner rule will apply the actual rule on each
new endpoint in turn so all matches will be found. The remaining matches
will be found as we return to the outer IRule and follow other paths along
the breadth of the containment tree. Note that if any of the actual traversals
fail, the inner rules will never be applied so the actual rule will never occur
when it does not meet the indirect containment relationship. Using the four
discussed rules (setup, initialize, traverse, and rule) T-Core can handle any
PositiveIndirectAssociation.

5.3 Negative Indirect Associations

While the PositiveIndirectAssociation specifies that an association must exist
between elements, the NegativeIndirectAssociation specifies that the indirect
association cannot exist between elements. The negative indirection may be
dependent on an attribute on the NegativeMatchClass connected to the Nega-

tiveIndirectAssociation so we cannot tell if the association really failed until we
traverse all the way down the hierarchy without finding a match for the the
negative class with the specified attribute value. The negation aspect causes
changes to the patterns introduced for the indirect association, but the basic
structure is comparable. Listing 7 shows the negative indirect rule. It contains
references to several negative versions of previously introduced rules. One ma-
jor difference in this setup from the original one is the introduction of queries
to test if the negative condition has been met. If it has, the NQuery reverses
the value of is success, so a failure to match looks like a success to the contain-
ing rule. The containing rules NIRule and NLSRule must also return success as
true if their matcher or iterator fail, since if a traversal (the outer rule) failed,
there is not even a direct link to the associated classes and the inner query will
never be reached. The other change for the NIRule is to immediately return the
packet if the inner rule fails. Since this is a negative test, if any inner rules fail
there is no reason to continue matching since a counterexample has already
been found. The only other change to NLSRule is to set the is success state
to false if an inner rule fails because even if the previous applications of the
outer rules succeeded, the query failed so the entire rule should still fail.

The sequence here is similar to the positive case. The setup rule sets up
the initial pivot, the initialize rule sets up the end pivot so traversal can begin,
and the traverse rule actually moves along the containment associations. At
each point, instead of applying a rule as in the positive version, the current
model element associated with the end pivot is tested to see if it matches
the undesired case. If it does, the query fails. Assuming the traversal for a
given setup rule succeeds all the way down the containment hierarchy, the
NegativeIndirectRule now applies the actual rule in the only major change from
the packet in of the PositiveIndirectRule. The five rules (four standard, one
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query) handle any NegativeMatchAssociation assuming the actual rule once
again uses the initial pivot and any needed connected components.

Listing 7 A rule that tests for absense of indirect containment before applying the actual
rule in Py-T-Core.

class NegativeIndirectRule( Composer ):

def __init__ (self , setupLHS , setupRHS , initialLHS , initialRHS ,

traverseLHS , traverseRHS , negativeTestLHS ,

apply_to_all , max_iterations=INFINITY ):

super (NegativeIndirectRule , self). __init__ ()

inner_traversal_rule = Sequence ([

NQuery (negativeTestLHS),

NLSRule (traverseLHS , traverseRHS ,

NQuery ( negativeTestLHS),

True , max_iterations )])

self.inner_rule = Sequence ([ ARule(initialLHS , initialRHS ),

NIRule (traverseLHS , traverseRHS ,

inner_traversal_rule , max_iterations )])

self.M = Matcher ( condition =setupLHS , max =max_iterations)

self.I = Iterator (max_iterations=max_iterations)

self.W = Rewriter (condition =setupRHS )

def packet_in (self , packet ):

self.is_success = False

packet = self.M.packet_in (packet )

if not self.M. is_success : return packet

packet = self.I.packet_in (packet ) #Choose the 1st match

if not self.I. is_success : return packet

while True:

packet = self.W.packet_in (packet )

if not self.W.is_success : return packet

packet = self.inner_rule .packet_in (packet ) #Apply inner rule

if self.inner_rule .is_success :

packet = self.actual_rule .packet_in (packet )

if not self.actual_rule .is_success :

self.is_success = False

return packet

packet = self.I.next_in (packet )

if not self.I.is_success : #No more iterations are left

self.is_success = True

return packet

5.4 Validation

In this section we have shown how the full DSLTrans model transformation
language is re-constructed in T-Core. Since no formal proof can endorse this
claim, we have run a large amount of exhaustive tests to verify the equivalence
between the two tools. For this purpose we have varied both the transforma-
tion domain meta-models (available with the DSLTrans documentation and
implementation) and the size of the models. Furthermore, we considered a
test as successful if it positively answered the following questions: Is the out-
put model from Py-T-Core is syntactically the same as the the one output
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from DSLTrans? Are the generated traceability links from DSLTrans a sub-set
of the generic links produced by the Py-T-Core transformation, given specific
input and output models? We currently do not have automatic support for
answering these questions, therefore a manual inspection was required. In the
future, we plan on using techniques from the model-based testing community,
for example mutation analysis [40].

6 Related Work

There has been several proposals to leverage the complexity of using existing
MTLs using a diversity of MTLs. For example Eclectic [12] consists of a family
of MTLs each dedicated to a specific task. TransML [24] is stack of MTLs where
lower level languages refine the upper ones from a development process point
of view. EMFTVM [60] proposes a common virtual machine to implement
ATL and other rewriting languages. In contrast, T-Core offers constructs at
an intermediate level between the previous two. A specific combination of
the operators, glued with an appropriate scheduling language leads to specific
transformation languages.

In the context of global model management, the authors of [59] define a type
system offering a set of primitives for model transformation. The advantage of
our approach is that T-Core is described here as a module and is thus directly
implementable. Also, the approach described in [59], does not deal with ex-
ceptions at all unlike T-Core. Nevertheless, their framework is able to achieve
higher-order transformations (HOTs), i.e., transformations that operate on
model transformations. The implementation of T-Core is currently available
in Python. Since this is an object-oriented language, the T-Core primitive oper-
ators are implemented as classes. Thus, at run-time, the operators are objects
which can be directly manipulations and thus emulate HOTs. However, as
mentioned in Section 4, T-Core can be combined with a modeling language.
Thus, HOTs can be easily specified in such a completely modeled transforma-
tion language.

The GP graph transformation language [37] also offers transformation
primitives. The authors however focus more on the scheduling of the rules
then on the rules themselves. Their scheduling (control) language is an ex-
tension of an SBL language. Our approach is more general since much more
complex scheduling languages (e.g., allowing concurrent and timed transfor-
mation execution) can be integrated with T-Core. Although it performs very
efficiently, the application area of GP is more limited, as it can not deal with
arbitrary domain-specific models.

Other graph transformation tools, such as VIATRA [57] and GReAT [1],
have their own virtual machine used as an API. In our approach, since the
primitive operations are modeled, they are completely compatible with other
existing model transformation frameworks.

T-Core does cover a significant amount of variation in pattern-based model
transformation. For example, we showed how to solve the amalgamated rule
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problem where pattern elements are combined with universal and existing
quantifiers. This was done by wisely “nesting” pre-condition patterns with
the use of pivots. Other pattern compositions include disjunctive constructs
such as in [4]. That is, a LHS pattern can consist of sub-patterns that can be
conjuncted and disjuncted. This can be accomplished with T-Core primitives
as illustrated in chapter 10 of [49]. When the LHS consists of two disjuncted
patterns, we first split each disjunctive case in separate pre-condition patterns.
Then, the packetIn method of the Matcher of each pattern is called. Each
resulting packet is output to a Selector which finally selects one of the packets.

The detection of conflicts in the Resolver and the Synchronizer is currently
conservative. However the user can override the detection with transformation-
or model-specific resolution and merging algorithms. The exception handling
mechanism in place can also be used for optimistic resolution [51]. An alterna-
tive is to incorporate more advanced detection mechanisms, such as through
critical pair analysis [33]. However, this technique assumes that the transfor-
mation units are traditional graph transformation rules with a single match-

rewrite combination, which is not always the case in T-Core.

7 Conclusion

This article motivated the need for providing MTL primitives. T-Core was
defined by precisely describing each of these primitive constructs. The de-
construction process of MTLs enabled us to re-construct existing simple model
transformation features as well as more complex ones by combining T-Core

with, for example, an SBL language. This allowed us to compare different
MTLs using a common basis. Furthermore, T-Core is combined with a pro-
gramming language which allows non-MDE users to integrate with MDE so-
lutions. This integration is transparent for programmers since Py-T-Core and
T-Core offer a complete API.

T-Corewas presented as a minimal collection of model transformation prim-
itives, defined at the optimal level of granularity. It is not restricted to any form
of specification of transformation units, be it rule-based, constraint-based, or
function-based. It can also represent bidirectional and functional transforma-
tions as well as queries. T-Core modularly encapsulates the combination of
these primitives through composition, re-use, and a common interface. It is an
executable module that is easily integrable with a programming or modeling
language.

It is impossible to prove that T-Core is a collection of the most primitive
transformation operators, because of the complexity and diversity of the ex-
pressiveness of most MTLs. Nevertheless we have illustrated throughout this
article how complex transformation units particular to different existing trans-
formation language can be defined in T-Core. However declarative transforma-
tions defined as relations, such as in QVT-Relation or Triple Graph Gram-
mars, cannot be directly expressed using T-Core primitives. That is because
their transformation units specify relations between the involved meta-models
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as opposed to the operational nature of transformation rules. However, if these
relations can be compiled into operational rules such as in [46], then T-Core

primitives can be used to mimic the corresponding behavior of the relations.
T-Core can serve as a basis for inter-operating model transformations ex-

pressed in different formalisms. That is, by mapping each and every construct
of the languages to an appropriate combination of T-Core operators. In [25],
the authors define a language for composing heterogeneous transformations
defined in different formalisms (e.g., ATL and QVT Operational Mappings).
Their approach is to wrap each transformation model in components and com-
municate between each other via in/out-port connections, treating the trans-
formation models as black-boxes. This is the opposite of opening the languages
and mapping them to a common denominator: T-Core. The disadvantage of
their approach is that port connection consistency is validated through simple
type checking. Also, their current implementation is restricted to models only
represented in Ecore.

We are currently working on techniques to analyze transformation lan-
guages built with T-Core as initiated in [50]. Also, the process of mapping
different transformation has lead to the discovery of re-usable complex trans-
formation units. We plan to generalize them and build a catalog of such “trans-
formation language design patterns”.
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