petrinet.py 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464
  1. #from numpy import *
  2. import igraph as ig
  3. import datetime
  4. #import pydot
  5. from threading import *
  6. from Queue import *
  7. from barrier import *
  8. from random import choice
  9. from sets import *
  10. class PnModule(Thread):
  11. def __init__(self, pnet, que, bar, full=False):
  12. Thread.__init__(self)
  13. '''Our graph'''
  14. self.pngraph = pnet;
  15. P = self.pngraph.vs.select(type_eq = 'P')
  16. key = P[0]['name'][:1]
  17. self.key = key
  18. #index in matrix to graph id
  19. self.mx_to_gr_indexT = {}
  20. self.mx_to_gr_indexP = {}
  21. self.mx_to_gr_indexTn = {}
  22. self.mx_to_gr_indexPn = {}
  23. self.que = que
  24. self.barrier = bar
  25. self.TFtoRun = {}
  26. self.ssc = 0
  27. self.full = full
  28. self.result={}
  29. self.xxx = 0
  30. def repstr(self,string, length):
  31. return (string * length)[0:length]
  32. def printMatrix(self,M):
  33. lenr = len(M[0])
  34. lenc = len(M)
  35. first = True
  36. i = 0
  37. j = 0
  38. text = ''
  39. colwidth = []
  40. for x in range(lenr):
  41. text+=self.pngraph.vs[self.mx_to_gr_indexT[x]]['name']+' '
  42. colwidth.append(len(self.pngraph.vs[self.mx_to_gr_indexT[x]]['name'])+1)
  43. text+='\n'
  44. for row in M:
  45. for el in row:
  46. text += '%d'%el+self.repstr(' ', colwidth[j]-len(str(int(el))))
  47. j+=1
  48. text += self.pngraph.vs[self.mx_to_gr_indexP[i]]['name']
  49. text+='\n'
  50. j=0
  51. i+=1
  52. print text
  53. def summary(self):
  54. ig.summary(self.reachability)
  55. def getKey(self):
  56. return self.key
  57. def next(self):
  58. self.ssc += 1
  59. return self.ssc
  60. def DminPlusMatrix(self):
  61. i = 0
  62. j = 0
  63. self.incidence = zeros((self.numP,self.numT,))
  64. for p in self.P:
  65. self.mx_to_gr_indexP[i]=p.index
  66. self.mx_to_gr_indexPn[p['name']]=i
  67. self.M0[i]=p['nbTokens']
  68. totrans = self.pngraph.successors(p.index)
  69. fromtrans = self.pngraph.predecessors(p.index)
  70. toweight = 0
  71. fromweight = 0
  72. for t in self.T:
  73. if t.index in totrans:
  74. self.dminus[i][j] = 1
  75. toweight = int(self.pngraph.es[self.pngraph.get_eid(p.index,t.index)]['weight'])
  76. self.dminus[i][j] = toweight
  77. if t.index in fromtrans:
  78. self.dplus[i][j] = 1
  79. fromweight = int(self.pngraph.es[self.pngraph.get_eid(t.index,p.index)]['weight'])
  80. self.dplus[i][j] = fromweight
  81. #print t['name']
  82. # if t.index in totrans:
  83. # self.dminus[i][j] = 1
  84. # elif t.index in fromtrans:
  85. # self.dplus[i][j] = 1
  86. # else:
  87. # pass#row.append(0)
  88. self.mx_to_gr_indexTn[t['name']] = j
  89. self.mx_to_gr_indexT[j] = t.index
  90. j+=1
  91. i+=1
  92. j = 0
  93. # self.printMatrix(self.dminus)
  94. # self.printMatrix(self.incidence)
  95. # self.printMatrix(self.dplus)
  96. #get Strongly connected components, used in modular analysis
  97. def getSCC(self,M):
  98. vindex = statePresent(M)
  99. if not vindex == -1:
  100. return self.reachability.vs[vindex]['SCC']
  101. else:
  102. return -1
  103. def getSCCvid(self,id):
  104. P = self.reachability.vs[int(id)]
  105. return self.reachability.vs[int(id)]['SCC']
  106. def statePresent(self, M):
  107. for v in self.reachability.vs:
  108. if all(v['M'] == M):
  109. return v.index
  110. return -1
  111. #get all enabled transitions for state exploration
  112. def enabledT(self,M):
  113. enabled=[]
  114. for j in range(self.numT):
  115. good = True
  116. tcol = self.dminus[0:self.numP,j] #Ti column over P as rows
  117. for i in range(self.numP):
  118. if tcol[i] > 0:
  119. t = self.mx_to_gr_indexT[j]
  120. p = self.mx_to_gr_indexP[i]
  121. weight = int(self.pngraph.es[self.pngraph.get_eid(p,t)]['weight'])
  122. if not M[i] >= weight :
  123. good = False
  124. break
  125. if good:
  126. # print 'Enabled trans %s'%self.pngraph.vs[self.mx_to_gr_indexT[j]]['name']
  127. enabled.append(j)
  128. return enabled
  129. #produce new marking
  130. def fire(self,j,M,fusion=False):
  131. if fusion:
  132. empty = []
  133. empty.append(j)
  134. return empty
  135. else:
  136. i = 0
  137. marking = ''
  138. for value in M:
  139. marking+=' %s-%d'%(self.pngraph.vs[self.mx_to_gr_indexP[i]]['name'],value)
  140. i+=1
  141. #print 'Old marking %s'%marking
  142. ts = zeros(self.numT) #array of Ts to fire, fire one transition indexed by j
  143. ts[j] = 1
  144. Mnew = M + dot(self.incidence,ts)
  145. #print 'Fire %s'%self.pngraph.vs[self.mx_to_gr_indexT[j]]['name']
  146. marking = ''
  147. i=0
  148. for value in Mnew:
  149. marking+=' %s-%d'%(self.pngraph.vs[self.mx_to_gr_indexP[i]]['name'],value)
  150. i+=1
  151. #print 'New marking %s'%marking
  152. return Mnew
  153. #create reachability graph
  154. def reachabilityG(self):
  155. work=[]
  156. work.append(self.M0)
  157. self.reachability.add_vertices(1)
  158. self.reachability.vs[0]['M'] = self.M0
  159. while work:
  160. M = work.pop()
  161. #del(work[-1])
  162. fromID = self.statePresent(M)
  163. enabledTs = self.enabledT(M)
  164. for i in enabledTs:
  165. Mnew = self.fire(i,M)
  166. idFound = self.statePresent(Mnew)
  167. if idFound == -1:
  168. self.reachability.add_vertices(1)
  169. newID = self.reachability.vcount()-1
  170. self.reachability.vs[newID]['M'] = Mnew
  171. #print fromID
  172. self.reachability.add_edges([(fromID,newID)])
  173. self.reachability.es[self.reachability.get_eid(fromID, newID)]['T'] = self.pngraph.vs[self.mx_to_gr_indexT[i]]['name']
  174. work.append(Mnew)
  175. else:
  176. self.reachability.add_edges([(fromID,idFound)])
  177. self.reachability.es[self.reachability.get_eid(fromID, idFound)]['T'] = self.pngraph.vs[self.mx_to_gr_indexT[i]]['name']
  178. self.barrier.wait() #several modules can run in parallel (comes from modular analysis) wait for all to finish.
  179. #mark strong components of a graph
  180. def SC(self):
  181. if not 'SCC' in self.reachability.vs.attribute_names():
  182. self.reachability.vs[0]['SCC'] = self.next()
  183. components = self.reachability.clusters(mode=ig.STRONG)
  184. for i in range(len(components)):
  185. ssc = self.next()
  186. changed = False
  187. partial = False
  188. for s in components[i]:
  189. if self.reachability.vs[s]['SCC']>=0:
  190. pass
  191. else:
  192. self.reachability.vs[s]['SCC'] = ssc
  193. changed = True
  194. if not changed:
  195. self.ssc -= 1
  196. #Transition fusion sets, modular analysys
  197. def addToEnabledTF(self,TF,M):
  198. if not TF in self.TFtoRun:
  199. self.TFtoRun[TF]=[]
  200. for m in self.TFtoRun[TF]:
  201. if all(m==M) :
  202. #print' duplicate'
  203. return
  204. self.TFtoRun[TF].append(M)
  205. # vattr = ''
  206. # j =0
  207. # for id in M:
  208. # vattr += '%s-%s,'%(self.pngraph.vs[self.mx_to_gr_indexP[j]]['name'],int(id))
  209. # j+=1
  210. #print 'adding %s to enabled Fusion transitions'%vattr
  211. #for modular analysis
  212. def explore(self,id):
  213. work = []
  214. work.append(id)
  215. while work:
  216. vid = work.pop()
  217. #print 'explore name %s'%self.reachability.vs[vid]['M']
  218. M = self.reachability.vs[vid]['M']
  219. enabledTs = self.enabledT(M)
  220. for i in enabledTs:
  221. if self.pngraph.vs[self.mx_to_gr_indexT[i]]['fusion'] == True: #new
  222. self.addToEnabledTF(self.pngraph.vs[self.mx_to_gr_indexT[i]]['name'],M) #new
  223. continue #noted the shared transition continue exploring.
  224. self.reachability.vs[vid]['visited'] = True
  225. succ = self.reachability.successors(vid)
  226. for i in succ:
  227. if not self.reachability.vs[i]['visited']:
  228. work.append(i)
  229. self.reset()
  230. def reset(self):
  231. for p in self.reachability.vs:
  232. p['visited']= False
  233. def reachabilityModular(self):
  234. work=[]
  235. sgwork=[]
  236. work.append(self.M0)
  237. self.reachability.add_vertices(1)
  238. self.reachability.vs[0]['M'] = self.M0
  239. xxx = 0;
  240. exp = False
  241. while self.run:
  242. while work:
  243. M = work.pop()
  244. fromID = self.statePresent(M)
  245. enabledTs = self.enabledT(M)
  246. from_M = []
  247. for i in enabledTs:
  248. if self.pngraph.vs[self.mx_to_gr_indexT[i]]['fusion'] == True: #new
  249. self.addToEnabledTF(self.pngraph.vs[self.mx_to_gr_indexT[i]]['name'],M) #new
  250. continue #noted the shared transition continue exploring.
  251. else:
  252. Mnew = self.fire(i,M)
  253. idFound = self.statePresent(Mnew)
  254. if idFound == -1:
  255. self.reachability.add_vertices(1)
  256. newID = self.reachability.vcount()-1
  257. self.reachability.vs[newID]['M'] = Mnew
  258. #print 'add edge src %d-dest %d name %s'%(fromID,newID,self.pngraph.vs[self.mx_to_gr_indexT[i]]['name'])
  259. self.reachability.add_edges([(fromID,newID)])
  260. self.reachability.es[self.reachability.get_eid(fromID, newID)]['T'] = self.pngraph.vs[self.mx_to_gr_indexT[i]]['name']
  261. #if not self.pngraph.vs[self.mx_to_gr_indexT[i]]['fusion'] == True:
  262. work.append(Mnew)
  263. #if self.pngraph.vs[self.mx_to_gr_indexT[i]]['fusion'] == True:
  264. #self.reachability.es[self.reachability.get_eid(fromID, newID)]['fusion'] = True
  265. else:
  266. if exp:
  267. pass
  268. #BACKWARDS
  269. #self.explore(idFound)
  270. self.reachability.add_edges([(fromID,idFound)])
  271. self.reachability.es[self.reachability.get_eid(fromID, idFound)]['T'] = self.pngraph.vs[self.mx_to_gr_indexT[i]]['name']
  272. if self.pngraph.vs[self.mx_to_gr_indexT[i]]['fusion'] == True:
  273. self.reachability.es[self.reachability.get_eid(fromID, idFound)]['fusion'] = True
  274. self.barrier.wait()
  275. exp = False
  276. self.graph(xxx);
  277. xxx+=1;
  278. ts = self.que.get(block=True,timeout=None)
  279. self.result={}
  280. res = {}
  281. if '@exit' in ts:
  282. self.run = False
  283. break
  284. for t in ts:
  285. self.result[t]=[]
  286. j = self.mx_to_gr_indexTn[t]
  287. # Mse = self.reachability.es.select(T_eq=t)
  288. from_M = []
  289. to_M = []
  290. for M in self.TFtoRun[t]: #loop over synchtransition edges
  291. exp = True
  292. Mnew = self.fire(j, M) #use marking at the source of the edge
  293. if self.statePresent(Mnew) == -1:
  294. self.reachability.add_vertices(1) #add this new marking
  295. newID = self.reachability.vcount()-1 # to the reachability
  296. self.reachability.vs[newID]['M'] = Mnew
  297. work.append(Mnew)
  298. from_M.append(self.statePresent(M))
  299. to_M.append(self.statePresent(Mnew))
  300. self.result[t].append(from_M)
  301. self.result[t].append(to_M)
  302. for ftlists in self.result:
  303. for from_to in self.result[ftlists]:
  304. for i in range(len(from_to)):
  305. from_to[i] = '%s-%d'%(self.key,from_to[i])
  306. for t in ts:
  307. del self.TFtoRun[t] #remove processed maybe not yet?
  308. def rnode(self,id,state):
  309. vattr = ""
  310. j=0
  311. i = len(state)
  312. for value in state:
  313. vattr += '%s-%s'%(self.pngraph.vs[self.mx_to_gr_indexP[j]]['name'],int(value))
  314. if not i-1 == 0:
  315. vattr+=','
  316. i -=1
  317. j+=1
  318. return "<node id=\"%s\"><marking>%s"%(id,vattr)+"</marking></node>\n"
  319. #export reachability graph to xml
  320. def reachtoxml(self,fname='',key=''):
  321. header = "<rgraph>\n"
  322. end = "</rgraph>"
  323. for v in self.reachability.vs:
  324. header+=self.rnode(v.index,v['M'])
  325. for e in self.reachability.es:
  326. header+="<edge source=\"%s\" target=\"%s\"><transition>%s</transition></edge>\n"%(e.source,e.target,e['T'])
  327. dateTag = datetime.datetime.now().strftime("%Y-%b-%d_%H-%M-%S")
  328. f = open('%s.%s.reachability.xml'%(fname,key),'w')
  329. header+=end
  330. f.write(header)
  331. f.close()
  332. def graph(self,key,fname='',id=None):
  333. vattr=''
  334. eattr = ''
  335. nodes = {}
  336. graph = pydot.Dot(self.key, graph_type='digraph')
  337. dateTag = datetime.datetime.now().strftime("%Y-%b-%d_%H-%M-%S")
  338. for v in self.reachability.vs:
  339. i = len(v['M'])
  340. leng = i
  341. j=0
  342. if 'SCC' in self.reachability.vs.attribute_names():
  343. vattr +='SCC-%s\n'%v['SCC']
  344. for value in v['M']:
  345. if leng == 1:
  346. vattr = 'fstate%d'%choice(range(100))
  347. else:
  348. if int(value) > 0:
  349. vattr += '%s-%s '%(self.pngraph.vs[self.mx_to_gr_indexP[j]]['name'],int(value))
  350. if not i-1 == 0:
  351. pass#vattr+=','
  352. i -=1
  353. j+=1
  354. #vattr+='\nid-%d'%v.index;
  355. #vattr +=')'
  356. nodes[v.index] = pydot.Node(vattr)
  357. graph.add_node(nodes[v.index])
  358. vattr = ''
  359. for e in self.reachability.es:
  360. graph.add_edge(pydot.Edge(nodes[e.source],nodes[e.target],label=e['T']))
  361. #graph.write_svg('graphs/STATE%s%d%s.svg'%(self.key,choice(range(100)),dateTag))
  362. if not fname:
  363. graph.write_svg('graphs/STATE%s%d%s.svg'%(self.key,choice(range(100)),dateTag))
  364. else:
  365. graph.write_svg('%s.%s.reachability.svg'%(fname,key))
  366. #the thread per module
  367. def run(self):
  368. self.reachability = ig.Graph(0,directed=True)
  369. TF = self.pngraph.vs.select(fusion_eq = True)
  370. self.TFS = []
  371. for tf in TF:
  372. self.TFS.append(tf['name'])
  373. self.P = self.pngraph.vs.select(type_eq = 'P')
  374. self.key = self.P[0]['name'][:1]
  375. self.T = self.pngraph.vs.select(type_eq = 'T')
  376. self.numP = len(self.P.indices)
  377. self.numT = len(self.T.indices)
  378. #Get places and transitions
  379. self.M0 = zeros(self.numP)
  380. self.dminus = zeros((self.numP,self.numT,))
  381. self.dplus = zeros((self.numP,self.numT,))
  382. self.DminPlusMatrix()
  383. self.incidence = self.dplus - self.dminus
  384. self.printMatrix(self.incidence)
  385. if self.full:
  386. self.reachabilityG()
  387. else:
  388. self.reachabilityModular()
  389. def reachable(self, state):
  390. P = zeros(self.numP)
  391. for ps in state:
  392. for key,value in ps.items():
  393. index = self.mx_to_gr_indexPn[key]
  394. P[index] = value
  395. id = self.statePresent(P)
  396. if not id==-1:
  397. return True
  398. else:
  399. return False
  400. def reachableMod(self,state):
  401. P = zeros(self.numP)
  402. for ps in state:
  403. for key,value in ps.items():
  404. index = self.mx_to_gr_indexPn[key]
  405. P[index] = value
  406. id = self.statePresent(P)
  407. components = self.markAncestors(id)
  408. return Set(components)
  409. def markAncestors(self,id):
  410. work = []
  411. result = []
  412. work.append(id)
  413. while work:
  414. vid = work.pop()
  415. result.append(self.reachability.vs[vid]['SCC'])
  416. self.reachability.vs[vid]['visitedd'] = True
  417. ancestors = self.reachability.predecessors(vid)
  418. for i in ancestors:
  419. if not self.reachability.vs[i]['visitedd']:
  420. work.append(i)
  421. #self.reset()
  422. return result
  423. def getEnabledTFs(self):
  424. return self.TFtoRun.keys()