cbd_simulate.alc 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456
  1. include "primitives.alh"
  2. include "modelling.alh"
  3. include "object_operations.alh"
  4. include "conformance_scd.alh"
  5. include "io.alh"
  6. include "metamodels.alh"
  7. Boolean function main(model : Element):
  8. String cmd
  9. Boolean running
  10. Element schedule_init
  11. Element schedule_run
  12. Element schedule
  13. String conforming
  14. schedule_init = create_schedule(model)
  15. schedule_run = read_root()
  16. while (bool_not(has_input())):
  17. if (read_attribute(model, "time", "start_time") == read_attribute(model, "time", "current_time")):
  18. schedule = schedule_init
  19. else:
  20. if (element_eq(schedule_run, read_root())):
  21. schedule_run = create_schedule(model)
  22. schedule = schedule_run
  23. //schedule = create_schedule(model)
  24. step_simulation(model, schedule)
  25. log("Finishing simulation, as we got input!")
  26. return True!
  27. Element function create_schedule(model : Element):
  28. // Create nice graph first
  29. Element nodes
  30. Element successors
  31. String element_name
  32. Element incoming_links
  33. Element all_blocks
  34. nodes = allInstances(model, "Block")
  35. successors = create_node()
  36. while (read_nr_out(nodes) > 0):
  37. element_name = set_pop(nodes)
  38. if (bool_not(dict_in(successors, element_name))):
  39. dict_add(successors, element_name, create_node())
  40. if (is_nominal_instance(model, element_name, "ICBlock")):
  41. if (element_eq(read_attribute(model, element_name, "last_in"), read_root())):
  42. incoming_links = allIncomingAssociationInstances(model, element_name, "InitialCondition")
  43. else:
  44. incoming_links = create_node()
  45. if (is_nominal_instance(model, element_name, "DerivatorBlock")):
  46. Element new_incoming_links
  47. new_incoming_links = allIncomingAssociationInstances(model, element_name, "Link")
  48. while (read_nr_out(new_incoming_links) > 0):
  49. list_append(incoming_links, set_pop(new_incoming_links))
  50. else:
  51. incoming_links = allIncomingAssociationInstances(model, element_name, "Link")
  52. while (read_nr_out(incoming_links) > 0):
  53. String source
  54. source = readAssociationSource(model, set_pop(incoming_links))
  55. if (bool_not(dict_in(successors, source))):
  56. dict_add(successors, source, create_node())
  57. set_add(successors[source], element_name)
  58. Element values
  59. values = create_node()
  60. dict_add(values, "S", create_node())
  61. dict_add(values, "index", 0)
  62. dict_add(values, "indices", create_node())
  63. dict_add(values, "lowlink", create_node())
  64. dict_add(values, "onStack", create_node())
  65. dict_add(values, "successors", successors)
  66. dict_add(values, "SCC", create_node())
  67. nodes = allInstances(model, "Block")
  68. while (read_nr_out(nodes) > 0):
  69. strongconnect(set_pop(nodes), values)
  70. return values["SCC"]!
  71. Integer function min(a : Integer, b : Integer):
  72. if (a < b):
  73. return a!
  74. else:
  75. return b!
  76. Void function strongconnect(v : String, values : Element):
  77. if (dict_in(values["indices"], v)):
  78. return!
  79. dict_overwrite(values["indices"], v, values["index"])
  80. dict_overwrite(values["lowlink"], v, values["index"])
  81. dict_overwrite(values, "index", cast_integer(values["index"]) + 1)
  82. list_append(values["S"], v)
  83. dict_overwrite(values["onStack"], v, True)
  84. Element successors
  85. String w
  86. successors = values["successors"][v]
  87. while (read_nr_out(successors) > 0):
  88. w = set_pop(successors)
  89. if (bool_not(dict_in(values["indices"], w))):
  90. strongconnect(w, values)
  91. dict_overwrite(values["lowlink"], v, min(values["lowlink"][v], values["lowlink"][w]))
  92. elif (dict_in(values["onStack"], w)):
  93. if (values["onStack"][w]):
  94. dict_overwrite(values["lowlink"], v, min(values["lowlink"][v], values["indices"][w]))
  95. if (value_eq(values["lowlink"][v], values["indices"][v])):
  96. Element scc
  97. scc = create_node()
  98. // It will always differ now
  99. w = list_pop_final(values["S"])
  100. list_append(scc, w)
  101. dict_overwrite(values["onStack"], w, False)
  102. while (w != v):
  103. w = list_pop_final(values["S"])
  104. list_append(scc, w)
  105. dict_overwrite(values["onStack"], w, False)
  106. list_insert(values["SCC"], scc, 0)
  107. return!
  108. String function readType(model : Element, name : String):
  109. return reverseKeyLookup(model["metamodel"]["model"], dict_read_node(model["type_mapping"], model["model"][name]))!
  110. Boolean function solve_scc(model : Element, scc : Element):
  111. Element m
  112. Integer i
  113. Integer j
  114. String block
  115. String blocktype
  116. Element incoming
  117. String selected
  118. Float constant
  119. Element t
  120. // Construct the matrix first, with as many rows as there are variables
  121. // Number of columns is 1 higher
  122. i = 0
  123. m = create_node()
  124. while (i < read_nr_out(scc)):
  125. j = 0
  126. t = create_node()
  127. while (j < (read_nr_out(scc) + 1)):
  128. list_append(t, 0.0)
  129. j = j + 1
  130. list_append(m, t)
  131. i = i + 1
  132. log("Matrix ready!")
  133. // Matrix initialized to 0.0
  134. i = 0
  135. while (i < read_nr_out(scc)):
  136. log("Creating matrix row")
  137. // First element of scc
  138. block = scc[i]
  139. blocktype = readType(model, block)
  140. // First write 1 in the current block
  141. dict_overwrite(m[i], i, 1.0)
  142. // Now check all blocks that are incoming
  143. if (blocktype == "AdditionBlock"):
  144. constant = 0.0
  145. elif (blocktype == "MultiplyBlock"):
  146. constant = 1.0
  147. log("Generating matrix for " + blocktype)
  148. log("Block: " + block)
  149. incoming = allIncomingAssociationInstances(model, block, "Link")
  150. Integer index_to_write_constant
  151. index_to_write_constant = -1
  152. log("Iterating over incoming")
  153. while (read_nr_out(incoming) > 0):
  154. log("Iteration")
  155. selected = readAssociationSource(model, set_pop(incoming))
  156. if (set_in(scc, selected)):
  157. // Part of the loop, so in the index of selected in scc
  158. // Five options:
  159. if (blocktype == "AdditionBlock"):
  160. // 1) AdditionBlock
  161. // Add the negative of this signal, which is as of yet unknown
  162. // x = y + z --> x - y - z = 0
  163. dict_overwrite(m[i], list_index_of(scc, selected), -1.0)
  164. elif (blocktype == "MultiplyBlock"):
  165. // 2) MultiplyBlock
  166. if (index_to_write_constant != -1):
  167. return False!
  168. index_to_write_constant = list_index_of(scc, selected)
  169. elif (blocktype == "NegatorBlock"):
  170. // 3) NegatorBlock
  171. // Add the positive of the signal, which is as of yet unknown
  172. dict_overwrite(m[i], list_index_of(scc, selected), 1.0)
  173. elif (blocktype == "DelayBlock"):
  174. // 5) DelayBlock
  175. // Just copies a single value
  176. dict_overwrite(m[i], list_index_of(scc, selected), -1.0)
  177. else:
  178. // Block that cannot be handled
  179. return False!
  180. else:
  181. // A constant, which we can assume is already computed and thus usable
  182. if (blocktype == "AdditionBlock"):
  183. constant = constant + cast_float(read_attribute(model, selected, "signal"))
  184. dict_overwrite(m[i], read_nr_out(scc), constant)
  185. elif (blocktype == "MultiplyBlock"):
  186. constant = constant * cast_float(read_attribute(model, selected, "signal"))
  187. // Not written to constant part, as multiplies a variable
  188. // Any other block is impossible:
  189. // * Constant would never be part of a SCC
  190. // * Delay would never get an incoming constant
  191. // * Negation and Inverse only get 1 input, which is a variable in a loop
  192. // * Integrator and Derivator never get an incoming constant
  193. if (index_to_write_constant != -1):
  194. dict_overwrite(m[i], index_to_write_constant, -constant)
  195. i = i + 1
  196. // Constructed a complete matrix, so we can start!
  197. log("Constructed matrix to solve:")
  198. log(matrix2string(m))
  199. // Solve matrix now
  200. eliminateGaussJordan(m)
  201. // Now go over m and set signals for each element
  202. // Assume that everything worked out...
  203. i = 0
  204. while (i < read_nr_out(m)):
  205. block = scc[i]
  206. unset_attribute(model, block, "signal")
  207. instantiate_attribute(model, block, "signal", m[i][read_nr_out(scc)])
  208. log((("Solved " + block) + " to ") + cast_string(m[i][read_nr_out(scc)]))
  209. i = i + 1
  210. return True!
  211. Integer function list_index_of(lst : Element, elem : Element):
  212. Integer i
  213. i = 0
  214. while (i < read_nr_out(lst)):
  215. if (value_eq(list_read(lst, i), elem)):
  216. return i!
  217. else:
  218. i = i + 1
  219. return -1!
  220. Void function step_simulation(model : Element, schedule : Element):
  221. String time
  222. Float signal
  223. Element incoming
  224. String selected
  225. String block
  226. String elem
  227. String blocktype
  228. Element memory_blocks
  229. Integer i
  230. Float delta_t
  231. Element scc
  232. time = "time"
  233. delta_t = 0.1
  234. memory_blocks = create_node()
  235. output("SIM_TIME " + cast_string(read_attribute(model, time, "current_time")))
  236. i = 0
  237. while (i < read_nr_out(schedule)):
  238. scc = list_read(schedule, i)
  239. i = i + 1
  240. if (list_len(scc) > 1):
  241. log("Solving algebraic loop!")
  242. if (bool_not(solve_scc(model, scc))):
  243. output("ALGEBRAIC_LOOP")
  244. return !
  245. else:
  246. block = set_pop(scc)
  247. // Execute "block"
  248. blocktype = readType(model, block)
  249. if (blocktype == "ConstantBlock"):
  250. signal = read_attribute(model, block, "value")
  251. elif (blocktype == "AdditionBlock"):
  252. signal = 0.0
  253. incoming = allIncomingAssociationInstances(model, block, "Link")
  254. while (read_nr_out(incoming) > 0):
  255. selected = readAssociationSource(model, set_pop(incoming))
  256. signal = signal + cast_float(read_attribute(model, selected, "signal"))
  257. elif (blocktype == "MultiplyBlock"):
  258. signal = 1.0
  259. incoming = allIncomingAssociationInstances(model, block, "Link")
  260. while (read_nr_out(incoming) > 0):
  261. selected = readAssociationSource(model, set_pop(incoming))
  262. signal = signal * cast_float(read_attribute(model, selected, "signal"))
  263. elif (blocktype == "NegatorBlock"):
  264. incoming = allIncomingAssociationInstances(model, block, "Link")
  265. signal = 0.0
  266. while (read_nr_out(incoming) > 0):
  267. selected = readAssociationSource(model, set_pop(incoming))
  268. signal = float_neg(cast_float(read_attribute(model, selected, "signal")))
  269. elif (blocktype == "InverseBlock"):
  270. signal = 0.0
  271. incoming = allIncomingAssociationInstances(model, block, "Link")
  272. while (read_nr_out(incoming) > 0):
  273. selected = readAssociationSource(model, set_pop(incoming))
  274. signal = float_division(1.0, cast_float(read_attribute(model, selected, "signal")))
  275. elif (blocktype == "DelayBlock"):
  276. signal = 0.0
  277. if (element_eq(read_attribute(model, block, "last_in"), read_root())):
  278. // No memory yet, so use initial condition
  279. incoming = allIncomingAssociationInstances(model, block, "InitialCondition")
  280. while (read_nr_out(incoming) > 0):
  281. selected = readAssociationSource(model, set_pop(incoming))
  282. signal = cast_float(read_attribute(model, selected, "signal"))
  283. else:
  284. signal = read_attribute(model, block, "last_in")
  285. unset_attribute(model, block, "last_in")
  286. set_add(memory_blocks, block)
  287. elif (blocktype == "IntegratorBlock"):
  288. if (element_eq(read_attribute(model, block, "last_in"), read_root())):
  289. // No history yet, so use initial values
  290. incoming = allIncomingAssociationInstances(model, block, "InitialCondition")
  291. while (read_nr_out(incoming) > 0):
  292. selected = readAssociationSource(model, set_pop(incoming))
  293. signal = cast_float(read_attribute(model, selected, "signal"))
  294. else:
  295. signal = cast_float(read_attribute(model, block, "last_in")) + (delta_t * cast_float(read_attribute(model, block, "last_out")))
  296. unset_attribute(model, block, "last_in")
  297. unset_attribute(model, block, "last_out")
  298. instantiate_attribute(model, block, "last_out", signal)
  299. set_add(memory_blocks, block)
  300. elif (blocktype == "DerivatorBlock"):
  301. if (element_eq(read_attribute(model, block, "last_in"), read_root())):
  302. // No history yet, so use initial values
  303. incoming = allIncomingAssociationInstances(model, block, "InitialCondition")
  304. while (read_nr_out(incoming) > 0):
  305. selected = readAssociationSource(model, set_pop(incoming))
  306. signal = cast_float(read_attribute(model, selected, "signal"))
  307. else:
  308. incoming = allIncomingAssociationInstances(model, block, "Link")
  309. while (read_nr_out(incoming) > 0):
  310. selected = readAssociationSource(model, set_pop(incoming))
  311. signal = (cast_float(read_attribute(model, selected, "signal")) - cast_float(read_attribute(model, block, "last_in"))) / delta_t
  312. unset_attribute(model, block, "last_in")
  313. set_add(memory_blocks, block)
  314. elif (blocktype == "ProbeBlock"):
  315. incoming = allIncomingAssociationInstances(model, block, "Link")
  316. while (read_nr_out(incoming) > 0):
  317. selected = readAssociationSource(model, set_pop(incoming))
  318. signal = cast_float(read_attribute(model, selected, "signal"))
  319. output((("SIM_PROBE " + cast_string(read_attribute(model, block, "name"))) + " ") + cast_string(signal))
  320. unset_attribute(model, block, "signal")
  321. instantiate_attribute(model, block, "signal", signal)
  322. output("SIM_END")
  323. while (read_nr_out(memory_blocks) > 0):
  324. block = set_pop(memory_blocks)
  325. // Update memory
  326. incoming = allIncomingAssociationInstances(model, block, "Link")
  327. while (read_nr_out(incoming) > 0):
  328. selected = readAssociationSource(model, set_pop(incoming))
  329. instantiate_attribute(model, block, "last_in", cast_float(read_attribute(model, selected, "signal")))
  330. // Increase simulation time
  331. Float new_time
  332. new_time = cast_float(read_attribute(model, time, "current_time")) + delta_t
  333. unset_attribute(model, time, "current_time")
  334. instantiate_attribute(model, time, "current_time", new_time)
  335. return !
  336. Void function eliminateGaussJordan(m : Element):
  337. Integer i
  338. Integer j
  339. Integer f
  340. Integer g
  341. Boolean searching
  342. Element t
  343. Float divisor
  344. i = 0
  345. j = 0
  346. while (i < read_nr_out(m)):
  347. // Make sure pivot m[i][j] != 0, swapping if necessary
  348. while (cast_float(m[i][j]) == 0.0):
  349. // Is zero, so find row which is not zero
  350. f = i + 1
  351. searching = True
  352. while (searching):
  353. if (f >= read_nr_out(m)):
  354. // No longer any rows left, so just increase column counter
  355. searching = False
  356. j = j + 1
  357. else:
  358. if (cast_float(m[f][j]) == 0.0):
  359. // Also zero, so continue
  360. f = f + 1
  361. else:
  362. // Found non-zero, so swap row
  363. t = cast_float(m[f])
  364. dict_overwrite(m, f, cast_float(m[i]))
  365. dict_overwrite(m, i, t)
  366. searching = False
  367. // If we have increased j, we will just start the loop again (possibly), as m[i][j] might be zero again
  368. // Pivot in m[i][j] guaranteed to not be 0
  369. // Now divide complete row by value of m[i][j] to make it equal 1
  370. f = j
  371. divisor = cast_float(m[i][j])
  372. while (f < read_nr_out(m[i])):
  373. dict_overwrite(m[i], f, float_division(cast_float(m[i][f]), divisor))
  374. f = f + 1
  375. // Eliminate all rows in the j-th column, except the i-th row
  376. f = 0
  377. while (f < read_nr_out(m)):
  378. if (bool_not(f == i)):
  379. g = j
  380. divisor = cast_float(m[f][j])
  381. while (g < read_nr_out(m[f])):
  382. dict_overwrite(m[f], g, cast_float(m[f][g]) - (divisor * cast_float(m[i][g])))
  383. g = g + 1
  384. f = f + 1
  385. // Increase row and column
  386. i = i + 1
  387. j = j + 1
  388. return !
  389. String function matrix2string(m : Element):
  390. Integer i
  391. Integer j
  392. String result
  393. result = ""
  394. i = 0
  395. while (i < read_nr_out(m)):
  396. j = 0
  397. while (j < read_nr_out(m[i])):
  398. result = result + cast_string(m[i][j]) + ", "
  399. j = j + 1
  400. i = i + 1
  401. result = result + "\n"
  402. return result!