next up previous
Next: Conclusions Up: Examples Previous: Explicit Interaction

Modulated Impulsive Forces

Consider the rod sliding on a rough surface in Fig. 7. In case of Coulomb friction, the friction force Ff depends on the normal force FN by a constant coefficient $\mu$, i.e., $F_f = \mu \vert F_N\vert$ [6], active in the direction opposite to vA,x, the velocity of the contact point at the surface. Fy is the kinetic force exerted by the center of mass in the vertical direction. Combined with the gravitational force, Fg, this yields the normal force FN = Fy + Fg


  
Figure 7: Coulomb friction.
\begin{figure}
\center\mbox{
\psfig {figure=rod.eps,width=3.2in}
}\end{figure}

Let the variables be defined as in Fig. 7, and vx be the horizontal velocity of the center of mass, M, vy the vertical velocity, and $\omega$ the angular velocity. Fig. 7 shows that the linear velocities relate to the angular velocity as

\begin{eqnarray}
\html{eqn88}v_x = -l \omega sin \theta \\ v_y = l \omega cos \theta\end{eqnarray}


The system has three inertial, energy storing, components, i.e., the linear inertias mx and my and the rotational inertia J. In this example, their values are all unity.

In case of sliding motion, point A is in contact with the floor, so vA,y = 0, which requires $v_y = -l \omega cos \theta$.This poses an algebraic constraint on vy and $\omega$, which may cause impulses governed by conservation principles between the two when initially this constraint is not satisfied. As a result the friction force that is related to $\dot{v}_y$ by $F_f = \mu \vert F_N\vert$may be of an impulsive nature. This impulse propagates into $\omega$ because of the $\dot{\omega} = -l sin \theta F_f + l cos \theta F_N$ constraint, and, therefore, causes exogeneous impulsive forces to interact with impulses due to conserved quantities, and these forces are modulated by the change of value of these quantities. Refer to [7] for a detailed analysis.

According to the previous discussion, the system equations can be compiled as \begin{displaymath}
{\small
\left.\begin{array}
{c}
\left[\begin{array}
{cccccc}...
 ... \\ 0 \\ 0 \\ -{F}_g \\ 0\end{array}\right]\end{array}\right.
}\end{displaymath}
In this system of equations, \begin{displaymath}
\dot{\bar{x}} =
\left[\begin{array}
{c}
\dot{v}_{y} \\ \dot{...
 ...r{x} = 
\left[\begin{array}
{c}
v_y \\ \omega\end{array}\right]\end{displaymath}
\begin{displaymath}
\dot{\hat{x}} =
\left[\begin{array}
{c}
\dot{v}_{x}\end{arra...
 ...ight];
\hat{x} = 
\left[\begin{array}
{c}
v_x\end{array}\right]\end{displaymath}
The remaining equations in h yield \begin{displaymath}
\hat{y} =
\left[\begin{array}
{c}
F_y \\ F_f \\ F_N\end{array}\right]\end{displaymath}

\begin{displaymath}
F' = 
\left[\begin{array}
{ccc}
0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 ...
 ...ay}
{ccc}
1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\end{displaymath}
and \begin{displaymath}
\hat{H}' = 
\left[\begin{array}
{ccc}
0 & 1 & -\mu \\ -1 & 0...
 ...& 0 & 0 \\ 0 & 0 & 0 \\ 0 & -1 & -l cos\theta\end{array}\right]\end{displaymath}
The pseude-inverse of F' is \begin{displaymath}
F'^+ = 
\left[\begin{array}
{ccc}
0 & 1 & 0 \\ 1 & 0 & 0 \\ ...
 ...eta}{l cos\theta} & 0 & \frac{1}{l cos\theta}\end{array}\right]\end{displaymath}
Therefore, \begin{displaymath}
\hat{H} F'^+ F'' = 
\left[\begin{array}
{ccc}
1 - \mu \frac{...
 ...ta} & -1 & \frac{1}{l cos\theta} \\ 0 & 0 & 0\end{array}\right]\end{displaymath}
results in

\begin{eqnarray}
\html{eqn106}(1 - \mu \frac{sin\theta}{cos\theta})(v_x - v_x^0)...
 ...x^0) -(v_y - v_y^0)
+ \frac{1}{l cos\theta}(\omega - \omega^0) = 0\end{eqnarray}


which can be solved in combination with $\bar{H} \bar{x} = 0$,\begin{displaymath}
v_y + l cos\theta \omega = 0\end{displaymath}
to give the state projection

\begin{eqnarray}
\html{eqn110}\omega = \frac{-l(cos\theta - \mu sin \theta) v_y^...
 ..._y^0 + \omega^0)}
{1 + l^2 cos\theta ( cos\theta - \mu sin\theta)}\end{eqnarray}


This is conform the topological analysis in [7]. Note that the change of $\omega$ and vy due to the modulated impulsive Coulomb friction force, $F_y = \mu \vert F_N\vert$, factors in correctly.


next up previous
Next: Conclusions Up: Examples Previous: Explicit Interaction
Pieter J. Mosterman ER
7/27/1998